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Abstract

Lynch syndrome (LS) leads to an increased risk of early-onset colorectal and other types of cancer and is caused by germline
mutations in DNA mismatch repair (MMR) genes. Loss of MMR function results in a mutator phenotype that likely underlies
its role in tumorigenesis. However, loss of MMR also results in the elimination of a DNA damage-induced checkpoint/
apoptosis activation barrier that may allow damaged cells to grow unchecked. A fundamental question is whether loss of
MMR provides pre-cancerous stem cells an immediate selective advantage in addition to establishing a mutator phenotype.
To test this hypothesis in an in vivo system, we utilized the planarian Schmidtea mediterranea which contains a significant
population of identifiable adult stem cells. We identified a planarian homolog of human MSH2, a MMR gene which is
mutated in 38% of LS cases. The planarian Smed-msh2 is expressed in stem cells and some progeny. We depleted Smed-
msh2 mRNA levels by RNA-interference and found a striking survival advantage in these animals treated with a cytotoxic
DNA alkylating agent compared to control animals. We demonstrated that this tolerance to DNA damage is due to the
survival of mitotically active, MMR-deficient stem cells. Our results suggest that loss of MMR provides an in vivo survival
advantage to the stem cell population in the presence of DNA damage that may have implications for tumorigenesis.
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Introduction

Lynch syndrome (LS), also referred to as hereditary non-polyposis

colorectal cancer, is a hereditary disease that leads to increased risk of

early-onset colorectal and other cancers and is caused by germline

mutations in DNA mismatch repair (MMR) genes [1]. LS is an

autosomal dominant disorder in which the patient inherits one

mutant allele and loses the remaining wild-type copy in the tumor. A

fundamental question is what happens to the cell upon loss of the

remaining wild-type allele such that cancer develops? One hypothesis

is that the resultant loss of MMR function leads to a cell with a

mutator phenotype, accelerating the tumorigenic process [2]. It is not

clear, however, whether this cell, upon loss of MMR function,

acquires a selective advantage prior to developing further mutations

in growth control and survival genes. In addition to repair, the MMR

proteins activate cell cycle checkpoints and apoptosis in response to

DNA damage in tissue culture experiments [3]. Thus, we hypothesize

that the MMR-defective cell in vivo will have a growth and/or

survival advantage over neighboring cells under conditions that give

rise to MMR-sensitive damage.

We are interested in the effects of MMR loss in the adult stem cell in

vivo. Focus on the adult stem cell as the tumor cell of origin has

increased in the past decade [4,5]. To address the effects of MMR loss

in adult stem cells, we examined the planarian Schmidtea mediterranea.

Planarians are bilaterally symmetric metazoan flatworms that contain a

population of pluripotent, proliferative adult stem cells called neoblasts.

Found throughout the body, the neoblasts function to replace cells lost

during normal physiological turnover and upon injury making these

organisms an excellent model for studying genes involved in the early

stages of converting a normal stem cell to a cancerous cell [6,7].

For the purpose of this study, we focused on Smed-msh2 since its

human homolog is commonly mutated in LS [8] and because of its

involvement in damage recognition [9]. We exposed animals

depleted of Smed-msh2 by RNA-interference (RNAi) to a DNA

alkylating agent, a potent inducer of MMR-dependent cell death

in vitro [10], and determined that planarians lacking MMR were

more tolerant to DNA damage than control animals and thus

displayed increased survival. Similarly, we observed improved

animal regeneration and an increased presence of mitotic cells

after DNA damage in Smed-msh2 deficient animals, suggesting that

loss of MMR provides adult stem cells with an in vivo survival

advantage in this cytotoxic environment.

Results

Identification of planarian MMR homologs
The DNA MMR proteins have been extensively studied across

many evolutionarily divergent model organisms. In order to find
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MMR family members in planarians, the human MMR protein

sequences MSH2, MSH6, and MLH1 were used to search the

draft assembly of the S. mediterranea genome [11]. TBLASTN [12]

revealed significant similarities from which we were able to design

gene-specific primers and clone fragments of each gene. 59 and 39

RACE were used to clone full-length cDNA sequences for Smed-

msh2 (GenBank accession number JF511467), Smed-msh6 (GenBank

accession number JF519637), and Smed-mlh1 (GenBank accession

number JF511468), including their respective 59 and 39 UTRs

(Figure 1A). The three MMR genes cluster with other MSH and

MLH homologs phylogenetically (Figure 1B and S1). Gene

ontology annotations [13] predict that Smed-msh2, Smed-msh6 and

Smed-mlh1 contain domains associated with ATP binding,

mismatched DNA binding and MMR. The predicted planarian

Msh2 protein reveals perfect identity at all four adenosine

nucleotide-binding motifs conserved in the MutS family that are

necessary for proper function (Figure 1C).

The distribution of Smed-msh2 expression as determined by whole-

mount in situ hybridization (WISH) is similar to other known

neoblast markers including smedwi-2 [14] and Smed-PCNA [15]. The

expression is primarily posterior to the photoreceptors and excluded

from the highly differentiated pharynx (Figure 2A). We exposed

planarians to gamma irradiation to specifically eliminate neoblasts

and their progeny, leaving post-mitotic tissues unaffected [16,17].

Following irradiation, a dramatic decrease in Smed-msh2 expressing

cells was detected within 24 hours, consistent with expression

localized to the neoblasts (Figure 2A). Weak uniform staining

remained after irradiation suggesting Smed-msh2 is expressed in some

non-neoblasts. We confirmed this by examining Smed-msh2 mRNA

levels from irradiated animals using qRT-PCR. We detected a

,2.5-fold decrease in Smed-msh2 expression one day following

irradiation that remained constant for at least 7 days post irradiation

(Figure 2B). Though the timing of Smed-msh2 expression loss was

similar to Smed-PCNA, the extent of the loss was not as dramatic.

Our findings were further validated using RNA-Seq data generated

from RNA isolated from non-irradiated (NIR) and irradiated (IR)

sexual and asexual animals. We found that expression levels of Smed-

msh2 and Smed-PCNA mRNA decreased in both strains following

irradiation (Figure 2C). Moreover, RNA-Seq data from FACS

purified irradiation-sensitive proliferating neoblasts (X1), irradia-

tion-sensitive non-proliferating neoblasts (X2) and irradiation

insensitive differentiated cells (Xins) revealed that Smed-msh2 and

Smed-PCNA are enriched in proliferating neoblasts (Figure 2C).

Interestingly, we observed a reduced expression of Smed-Msh2 and

Smed-PCNA in asexual animals compared to sexual animals. Taken

together, these results suggest that Smed-msh2 is predominantly

expressed in the stem cell population, though it is also expressed in

some non-neoblast cell types as well.

Smed-msh2 RNAi
Adult planarians that are fed bacterially-expressing dsRNA

targeted to a gene of interest results in specific mRNA knockdown

that efficiently spreads to all tissues throughout the organism [18].

Following RNAi feedings, WISH and qRT-PCR confirmed that

Smed-msh2 was efficiently reduced (Figures 3A and 3B). Smed-

msh2(RNAi) planarians were monitored for one month following

treatment and did not exhibit any apparent phenotypes that

differed from empty-vector fed RNAi [ev(RNAi)] or gfp(RNAi)

controls suggesting that Smed-msh2 is not required for normal tissue

homeostasis. To examine whether loss of Smed-msh2 had an effect

on neoblasts, we bisected the Smed-msh2(RNAi) animals and

monitored regeneration. Upon amputation, planarians are able

to completely regenerate within 17 days in a process that is

dependent on functioning adult stem cells [7,19]. We observed

that Smed-msh2(RNAi) animals regenerated completely similar to

controls. These results were not surprising as constitutive loss of

Msh2 in mice results in live animals that appear to develop

normally [20]. However, these mice succumb to cancer at around

six months of age. To determine the long-term effects of loss of

Smed-msh2 on planarians, we continued weekly Smed-msh2(RNAi) or

ev(RNAi) feedings on small groups of animals and monitored the

animals for an additional three months. At approximately seven

and ten weeks following initial RNAi feeding, we bisected the

animals to determine any regeneration defects. All amputated

fragments from Smed-msh2(RNAi) and ev(RNAi) groups regenerated

completely within two weeks at both time points. After the second

round of regeneration, the control animals resumed normal

growth, but the Smed-msh2(RNAi) animals appeared to shrink. By

the end of the fourth month, two of the Smed-msh2(RNAi) animals

died. The remaining Smed-msh2(RNAi) animals were significantly

smaller than the ev(RNAi) control animals (Figure 3C). These

remaining Smed-msh2(RNAi) animals died shortly after by lysis,

similar to animals treated with gamma-irradiation. We observed a

similar shrinking phenotype with a second group of Smed-

msh2(RNAi) animals that were fed weekly for three months

following injection with DMSO (as a negative control for

experiments described below). These animals were never cut,

however, the Smed-msh2(RNAi) animals shrunk considerably

compared to the ev(RNAi) control animals (Figure 3D).

Effect of DNA damage on Smed-msh2(RNAi) animals
MMR-deficient tumor cell lines and mouse embryonic fibro-

blasts (MEFs) from Msh2, Mlh1 and Msh6 knockout mice are less

sensitive to treatment with the DNA alkylating agent N-methyl-N’-

nitro-N-nitrosoguanidine (MNNG) [10,21,22,23,24,25]. Based on

this in vitro data from higher organisms, we predicted that loss of

Smed-msh2 would result in an increased survival advantage in

planarians treated with MNNG. To test the effects of alkylation

damage on planarians, animals were depleted of Smed-msh2 as

described above. 24 hours after final RNAi feeding, the animals

were injected with varying doses of MNNG or a DMSO-only

control and monitored for the next 24 days (Figure 4A). At the

lowest dose of MNNG (0.4 mg/g) 100% of control and Smed-

msh2(RNAi) animals survived the duration of the experiment.

However, after exposure to 1.0 mg/g MNNG, a significant

survival advantage was observed for the Smed-msh2(RNAi) animals

compared to the gfp(RNAi) animals (P = 0.024, log rank test)

(Figure 4B). Similarly, at the highest dose of MNNG (2.0 mg/g),

100% of the gfp(RNAi) animals died by day 16 while the Smed-

msh2(RNAi) animals showed an overall increase in survival with a

marked delay in death among the animals that did succumb to the

drug (P = 0.0007, log rank test).

MNNG treatment results in the addition of methyl groups to

multiple nucleophilic sites on DNA bases including the O6 position

of guanine. If left unrepaired, the O6-MeG will mismatch with

thymine during DNA replication [26]. The cytotoxicity of O6-

MeG:T mismatches depends upon their recognition by MSH2-

MSH6. To confirm that our Smed-msh2(RNAi) animals are more

resistant to MNNG due to a MMR-dependent recognition of O6-

MeG lesions, we treated these animals with another DNA

alkylating agent, methylmethane sulfonate (MMS). MMS gener-

ates a significantly smaller percentage of O6-MeG lesions than

MNNG, thus its cytotoxicity does not depend upon recognition by

MSH2-MSH6 [26]. Smed-msh2(RNAi) and gfp(RNAi) animals were

treated with increasing doses of MMS and monitored for ten days

after treatment. In contrast with MNNG, there was no survival

advantage observed for Smed-msh2(RNAi) animals compared to

gfp(RNAi) controls (Figure S2). There was a modest survival
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Figure 1. The planarian mismatch repair homologs. (A) Exon/intron map of the Smed-msh2, Smed-msh6, and Smed-mlh1 genes. The exons are
depicted by rectangles (ORF = shaded; UTRs = unshaded). Contig numbers are from the S. mediterranea Genome Database (18). Smed-mlh1 spans two
non-overlapping contigs. (B) Phylogenetic trees depicting the evolutionary relationship among the full-length MMR proteins encoded in genomes of
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disadvantage for Smed2-msh2(RNAi) animals at the intermediate

dose (500 mM) of MMS that was significant (P = 0.015, log rank

test). These results combined with the MNNG survival data are

consistent with a mechanism in which the Smed-msh2 protein is

involved in an O6-MeG-dependent cell death process.

In order to determine whether the observed survival advantage

following MNNG treatment was the result of a stem-cell specific

response, we took advantage of the regenerative capabilities of the

planarian. To measure stem cell function, we examined the effects

of alkylation damage on regeneration in RNAi treated animals.

Following RNAi feedings as described above, planarians were

injected with 1.0 mg/g MNNG and bisected laterally 24 hours

later (Figure 5A). As a marker for regeneration, we monitored

photoreceptor developments in regenerating tail blastemas.

Regeneration of the photoreceptors occurred by day 5 in 100%

of mock injected gfp(RNAi) and Smed-msh2(RNAi) animals

(Figure 5B). We observed a dramatic inhibition of regeneration

in gfp(RNAi) animals injected with MNNG. Only one animal had

regenerated photoreceptors by day 5, with half of the animals

failing to regenerate at all. Though slightly delayed, all of the Smed-

msh2(RNAi) animals injected with MNNG regenerated photore-

ceptors. These results suggest that loss of Smed-msh2 provides the

stem cells a survival advantage in the presence of DNA damage.

To further confirm that MNNG resulted in the elimination of

the dividing stem cells, we utilized the presence of phosphorylated

histone H3 (pH 3) as a marker for mitotically active cells. Histone

Figure 2. Smed-msh2 expression in neoblasts. (A) Whole-mount in situ hybridization depicting the expression pattern of Smed-msh2 in
planarians. Anterior end at top. Scale bars: 0.5 mm. (B) The expression levels of Smed-msh2 and Smed-PCNA mRNA examined by qRT-PCR using RNA
isolated from five unirradiated or c-irradiated asexual animals. Error bars indicate SD from three experiments. The y-axis fold change is normalized to
Smed-GAPDH. (C) Transcript expression profiles of non-irradiated (NIR) and irradiated (IR) sexual or asexual strains (columns 1-4) and adult cell
populations (columns 5-7, see text for definitions). Raw expression levels (FPKM) were standardized and converted into Z-scores which measure the
number of standard deviations of each value above or below the mean. The color range for Z-scores is indicated in yellow and blue, respectively.
doi:10.1371/journal.pone.0021808.g002

common model organisms using the Neighbor joining method. (C) Alignment of the ATPase domain of several MSH2 family members, with
homologous residues shaded in gray.
doi:10.1371/journal.pone.0021808.g001
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H3 is phosphorylated on its amino terminus as cells traverse from

the G2 to M phase of the cell cycle [27]. Both gfp(RNAi) and Smed-

msh2(RNAi) animals were exposed to MNNG and then fixed 1, 4

or 7 days later. We observed a dramatic decrease in the number of

pH 3-positive cells following MNNG treatment in both groups of

animals. However, we consistently noticed a significantly greater

number of pH 3 stained cells in the Smed-msh2(RNAi) animals at

each time point (p,0.05) (Figures 6A and 6B). These results

suggest that MMR-defective cells are less sensitive to growth arrest

and cell death effects of alkylation damage in vivo.

Discussion

When the MMR genes were first linked to Lynch syndrome, it

was proposed that loss of MMR results in a cell with a mutator

phenotype that accumulates mutations in important oncogenes

Figure 3. Long-term depletion of Smed-msh2 by RNAi leads to shrinkage of animals. (A) WISH of Smed-msh2 in gfp(RNAi) or Smed-
msh2(RNAi) planarians. Dorsal view with anterior end at top. Scale bar: 0.5 mm. (B) qRT-PCR of gfp(RNAi) and Smed-msh2(RNAi) animals. Expression
analyzed seven days after the final RNAi feeding. The y-axis fold change normalized to smed-GAPDH. Error bars indicate SD from samples in triplicate.
(C). Four planarians per group were initially fed Smed-msh2(RNAi) or ev(RNAi) as described under Methods. Animals were fed at weekly intervals
beginning at one month following first feeding. Animals were bisected at seven weeks and again at ten weeks. After four months, animals were
photographed and measured using ImageJ software. (D). Ten planarians per group were initially fed Smed-msh2(RNAi) or ev(RNAi) as described under
Methods then injected with DMSO on day six after the first feeding. Animals were fed at weekly intervals beginning at five weeks following first
feeding. One ev(RNAi) and three Smed-msh2(RNAi) animals died for reasons unrelated to treatment. Additional animals were randomly removed for
verification of RNAi knockdown. After three months, remaining animals were photographed and measured using ImageJ software. Statistical
differences are measured by Student’s t-test (*indicates p,0.05).
doi:10.1371/journal.pone.0021808.g003

Figure 4. Depletion of Smed-msh2 confers tolerance to DNA damage. (A) Experimental timeline for MNNG survival experiments. (B) Survival
curves of gfp(RNAi) and Smed-msh2(RNAi) planarians in response to indicated doses of MNNG generated using GraphPad Prism 5. n = 10 worms per
group. Differences between gfp(RNAi) and Smed-msh2(RNAi) curves are significant for 1.0 mg/g and 2.0 mg/g doses (P = 0.024 and 0.0007,
respectively, using log-rank test).
doi:10.1371/journal.pone.0021808.g004

Mismatch Repair Defective Stem Cells in Planarians

PLoS ONE | www.plosone.org 5 July 2011 | Volume 6 | Issue 7 | e21808



and tumor suppressors at an increased rate [2]. However, the

ability of the MMR proteins to invoke cell cycle checkpoints and

cell death in response to certain DNA lesions indicate that this

pathway may be involved in a more global DNA damage response

that prevents the propagation of cells with damaged DNA. This

global damage response has been proposed to serve as a barrier

against genetic instability that must be overcome for the cell to

progress to malignancy [28,29].

Though much has been learned about MMR function in cell

culture models, to understand the role of MMR in tumorigenesis,

in vivo studies are necessary. Animal models of MMR deficiency

including mouse models have been very useful in this regard [20].

In particular, two mouse models that carry missense mutations in

Msh2 or Msh6 have provided some interesting clues about the role

of the MMR-dependent damage response in tumorigenesis

[30,31]. Mouse embryonic fibroblasts carrying these mutations

were shown to be inefficient at repairing DNA mismatches, yet

maintain the MMR-dependent sensitivity to certain cytotoxic

agents. Interestingly, though these mice develop cancer, the onset

of tumor formation appears significantly delayed compared to

complete gene knockout mice. These results suggest that, though

the establishment of a mutator phenotype is likely the main driving

force for tumorigenesis in MMR-defective cells, the ability of the

MMR proteins to maintain a global DNA damage response may

also play a role in delaying tumorigenesis.

We have previously hypothesized that loss of MMR function in

an adult stem cell may provide a temporary competitive advantage

allowing for the increased propagation of daughter cells that carry a

mutator phenotype [32]. To address this hypothesis, we wanted to

examine the response of MMR-deficient cells to stress prior to

tumor formation. We utilized the planarian S. mediterranea as an in

vivo animal model due to the relative ease with which one can

monitor a population of adult stem cells in this organism. Smed-

msh2(RNAi) animals display increased tolerance to the cytotoxic

effects of the DNA damaging drug MNNG compared to control

animals. In addition, we observed a delayed, but otherwise normal,

regeneration response in Smed-msh2(RNAi) animals exposed to

MNNG compared to gfp(RNAi) controls. Our pH 3 foci studies also

revealed that MMR-defective neoblasts are significantly more

resistant to the effects of DNA damage than normal stem cells. We

did observe an overall decrease in pH 3-positive cells in both the

Smed-msh2(RNAi) and gfp(RNAi) animals after MNNG treatment.

This result likely reflects the ability of MNNG to activate MMR-

independent checkpoint and cell death pathways, possibly through

activation of the base excision repair pathway [33]. An increase in

mitotic activity over time is observed in both populations of animals

suggesting not all of the neoblasts are destroyed by the damage,

however, the increase is significantly greater in the Smed-msh2(RNAi)

group at every time point. It is possible that the differences we

observe would be more dramatic if loss of MMR expression were

complete such as through deactivating mutations. The ability to

generate transgenic planarians would greatly enhance these studies.

A prediction from our results is that the surviving stem cells in the

Smed-msh2(RNAi) animals would continue to accumulate mutations

perhaps leading to tumor formation. There is evidence to suggest

that planarians can develop tumors when treated with carcinogens

[34]. We examined a population of Smed-msh2(RNAi) animals for four

months for signs of tumor formation. We did not observe any

noticeable signs of tumor growth, however, interestingly the Smed-

msh2(RNAi) animals became increasingly smaller compared to

ev(RNAi) control animals. These results may be a phenomenon

limited to the planarian. Planarians are capable of regulating

Figure 5. Smed-msh2-dependent regeneration defect in MNNG treated planarians. (A) Experimental timeline for analyzing regeneration of
gfp(RNAi) and Smed-msh2(RNAi) planarians following MNNG treatment. (B) Percentage of animals with complete regeneration of two photoreceptors
on dorsal fragment following bisection of mock (left panel) or 1.0 mg/g MNNG (right panel) treated animals. White bars: gfp(RNAi). Black bars: Smed-
msh2(RNAi). (n = 10 worms/group)
doi:10.1371/journal.pone.0021808.g005
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neoblast division in response to its environment. When nutrients are

scarce, for example, planarians will shrink due to a change in cell

number [35]. This may result from an increase in apoptosis or

possibly a loss of stem cell asymmetric division in which both

daughters become post-mitotically differentiated cells. We are

currently examining these possibilities in long-term Smed-msh2(RNAi)

fed animals. This ability to regulate total cell number may provide an

extra anti-tumorigenic protection in this organism. Alternatively,

these results may suggest that while loss of MMR can provide a

short-term selective advantage under certain environmental condi-

tions, loss of MMR in the long term is disadvantageous.

Methods

Planarian culturing
Asexual and sexual strains of S. mediterranea were maintained

essentially as described [36] at 20uC in ddH2O supplemented with

1.6 mM NaCl, 1.0 mM CaCl2, 1.0 mM MgSO44, 0.1 mM

MgCl2, 0.1 mM KCl, and 1.2 mM NaHCO3 and fed homoge-

nized calf liver. All animals were starved for one week prior to any

experiments.

Cloning mismatch repair genes
Putative MMR genes were identified by performing TBLASTN

searches of the version 3.1 draft assembly of the S. mediterranea

genome with human MMR proteins. The Smed-msh2, Smed-mlh1,

and Smed-msh6 cDNAs were obtained by RT-PCR cloning of an

internal fragment, followed by 59 and 39 Rapid Amplification of

cDNA Ends using the FirstChoice RLM-RACE kit (Ambion, Inc.).

Gene Expression Analysis
Expression profiles for MMR genes were analyzed using RNA-

Seq data to be described elsewhere (A.M.R., D. P. and B.R.G., in

preparation). Briefly, reads were aligned to the draft assembly of

the S. mediterranea genome using Bowtie alignment software [37].

Read densities were used to measure transcript expression levels in

units of FPKM (fragments per kilobase of exon model per million

mapped reads) [38]. X1, X2 and Xins cell populations were

isolated from sexual planarians by fluorescent activated cell sorting

as previously described [39]. Transcript expression levels between

irradiated and non-irradiated samples and X1, X2 and Xins cell

populations were compared using Z-scores.

RNAi
cDNAs for individual genes were cloned into pDONRdT7 [40]

using a BP reaction (Invitrogen) and the resulting clones

transformed into Escherichia coli strain HT115. 2.0 mL of bacterial

culture was pelleted and resuspended in 25 mL of 1:1 homogenized

calf liver and water, and mixed with 0.7 mL of red food coloring to

form a paste. Animals were fed RNAi every other day for a total of

three feedings. For long-term RNAi experiments, animals were

initially fed as described above, then fed once per week for the

duration of the experiment.

Quantitative Reverse Transcriptase PCR
First strand cDNA was synthesized from 2 mg of total planarian

RNA using SuperScriptII (Invitrogen). Total RNA was DNase I

(Amp Grade, Invitrogen) treated prior to reverse transcription.

Gene specific primers were designed for the individual candidate

genes using the Custom TaqManH Assay Design Tool (Applied

Biosystems). All qRT-PCR experiments were performed in

triplicate using an Applied Biosystems StepOneTM Real-Time

PCR system. For RNAi experiments, the Standard Curve Method

was used to determine the level of gene expression, using the

ubiquitously expressed Smed-GAPDH (H.8.10b) as a reference. For

irradiation experiments, planarians were exposed to 90 Gy of c-

irradiation using a Gamma Cell 1000 Cesium 137 irradiator at

,200 rad/min for 45 min. The Comparative DDCt Method was

used to determine gene expression levels of Smed-msh2 and Smed-

PCNA.

Survival and Regeneration Assays
RNAi was performed on groups of ten sexual animals [41]. One

day following the last RNAi feeding (as described above), animals

were injected once with the indicated concentrations of MNNG

(obtained from the National Cancer Institute Chemical Carcin-

ogen Reference Standard Repository; CAS: 70-25-7) dissolved in

DMSO mixed with red food coloring. For the survival assay,

animals were monitored for viability for 24 days following

injection. Alternatively, RNAi treated animals were soaked in

the indicated concentrations of MMS (Sigma) for ten days and

monitored daily for viability. For regeneration assays, animals

Figure 6. Smed-msh2 depletion enhances survival of mitotically
active neoblasts in MNNG treated planarians. The number of
H3ser10 p (pH 3) stained foci per mm2 as a marker of mitotically active
neoblasts in mock (A) and MNNG (B) treated planarians. gfp(RNAi) and
Smed-msh2(RNAi) animals were stained following exposure to 1.0 mg/g
MNNG at days 1, 4, and 7-post injection. White bars: gfp(RNAi). Black bars:
Smed-msh2(RNAi). Statistical differences measured by Student’s
>test and error bars indicate SEM.<?FIGTITLE 0 (* indicates p,0.05) n = at
least four animals per experiment with two experimental replicates. (C)
Representative animals from day four time point. Dorsal view with anterior
end at top. * indicates location of photoreceptors. Scale bars: 200 mm.
doi:10.1371/journal.pone.0021808.g006
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were bisected laterally 24 hours after 1.0 mg/g MNNG or vehicle

control injection and tail fragments were monitored for appear-

ance of both photoreceptors.

Immunohistochemistry and whole-mount in situ
hybridization (WISH)

Immunostaining with anti-phosphohistone H3 (pH 3) antibody

(Cell Signaling) was performed as described [40]. Specimens were

imaged on a Zeiss LSM 510Meta confocal microscope. Images

were processed and quantified using ImageJ (http://rsbweb.nih.

gov/ij/). WISH was performed essentially as described [42].

Hybridization was carried out at 55uC in prehybridization buffer

supplemented with 2% dextran sulfate. Animals were developed

using BM Purple (Roche).

Supporting Information

Figure S1 Smed-Msh2 clusters with other MSH2 homo-
logs. Phylogenetic tree depicting the evolutionary relationship

among the full-length MutS protein homologs encoded in

genomes of common model organisms using the Neighbor joining

method.

(TIF)

Figure S2 Depletion of Smed-msh2 confers no selective
advantage to MMS. Survival curves of gfp(RNAi) and Smed-

msh2(RNAi) planarians in response to indicated doses of MMS

generated using GraphPad Prism 5. n = 10 worms per group.

Differences between gfp(RNAi) and Smed-msh2(RNAi) curves are

significant for 500 mM MMS curves (P = 0.015, using log-rank

test).

(TIF)
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