@article {2465, title = {Identification of novel HPFH-like mutations by CRISPR base editing that elevate the expression of fetal hemoglobin.}, journal = {Elife}, volume = {11}, year = {2022}, month = {2022 02 11}, abstract = {

Naturally occurring point mutations in the promoter switch hemoglobin synthesis from defective adult beta-globin to fetal gamma-globin in sickle cell patients with hereditary persistence of fetal hemoglobin (HPFH) and ameliorate the clinical severity. Inspired by this natural phenomenon, we tiled the highly homologous proximal promoters using adenine and cytosine base editors that avoid the generation of large deletions and identified novel regulatory regions including a cluster at the -123 region. Base editing at -123 and -124 bp of promoter induced fetal hemoglobin (HbF) to a higher level than disruption of well-known BCL11A binding site in erythroblasts derived from human CD34+ hematopoietic stem and progenitor cells (HSPC). We further demonstrated in vitro that the introduction of -123T \> C and -124T \> C HPFH-like mutations drives gamma-globin expression by creating a de novo binding site for KLF1. Overall, our findings shed light on so far unknown regulatory elements within the promoter and identified additional targets for therapeutic upregulation of fetal hemoglobin.

}, keywords = {Adenine, Anemia, Sickle Cell, beta-Globins, beta-Thalassemia, Cell Line, Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR-Cas Systems, Cytosine, Fetal Hemoglobin, gamma-Globins, Gene Editing, Hematopoietic Stem Cells, Humans, Point Mutation, Promoter Regions, Genetic}, issn = {2050-084X}, doi = {10.7554/eLife.65421}, author = {Ravi, Nithin Sam and Wienert, Beeke and Wyman, Stacia K and Bell, Henry William and George, Anila and Mahalingam, Gokulnath and Vu, Jonathan T and Prasad, Kirti and Bandlamudi, Bhanu Prasad and Devaraju, Nivedhitha and Rajendiran, Vignesh and Syedbasha, Nazar and Pai, Aswin Anand and Nakamura, Yukio and Kurita, Ryo and Narayanasamy, Muthuraman and Balasubramanian, Poonkuzhali and Thangavel, Saravanabhavan and Marepally, Srujan and Velayudhan, Shaji R and Srivastava, Alok and DeWitt, Mark A and Crossley, Merlin and Corn, Jacob E and Mohankumar, Kumarasamypet M} } @article {3342, title = {Methionine uptake via the SLC43A2 transporter is essential for regulatory T-cell survival.}, journal = {Life Sci Alliance}, volume = {5}, year = {2022}, month = {2022 Sep 09}, abstract = {

Cell death, survival, or growth decisions in T-cell subsets depend on interplay between cytokine-dependent and metabolic processes. The metabolic requirements of T-regulatory cells (Tregs) for their survival and how these are satisfied remain unclear. Herein, we identified a necessary requirement of methionine uptake and usage for Tregs survival upon IL-2 deprivation. Activated Tregs have high methionine uptake and usage to S-adenosyl methionine, and this uptake is essential for Tregs survival in conditions of IL-2 deprivation. We identify a solute carrier protein SLC43A2 transporter, regulated in a Notch1-dependent manner that is necessary for this methionine uptake and Tregs viability. Collectively, we uncover a specifically regulated mechanism of methionine import in Tregs that is required for cells to adapt to cytokine withdrawal. We highlight the need for methionine availability and metabolism in contextually regulating cell death in this immunosuppressive population of T cells.

}, keywords = {Interleukin-2, Methionine, Racemethionine, Solute Carrier Proteins, T-Lymphocytes, Regulatory}, issn = {2575-1077}, doi = {10.26508/lsa.202201663}, author = {Saini, Neetu and Naaz, Afsana and Metur, Shree Padma and Gahlot, Pinki and Walvekar, Adhish and Dutta, Anupam and Davathamizhan, Umamaheswari and Sarin, Apurva and Laxman, Sunil} } @article {2463, title = {Whole genome sequencing delineates regulatory, copy number, and cryptic splice variants in early onset cardiomyopathy.}, journal = {NPJ Genom Med}, volume = {7}, year = {2022}, month = {2022 Mar 14}, pages = {18}, abstract = {

Cardiomyopathy (CMP) is a heritable disorder. Over 50\% of cases are gene-elusive on clinical gene panel testing. The contribution of variants in non-coding DNA elements that result in cryptic splicing and regulate gene expression has not been explored. We analyzed whole-genome sequencing (WGS) data in a discovery cohort of 209 pediatric CMP patients and 1953 independent replication genomes and exomes. We searched for protein-coding variants, and non-coding variants predicted to affect the function or expression of genes. Thirty-nine percent of cases harbored pathogenic coding variants in known CMP genes, and 5\% harbored high-risk loss-of-function (LoF) variants in additional candidate CMP genes. Fifteen percent harbored high-risk regulatory variants in promoters and enhancers of CMP genes (odds ratio 2.25, p = 6.70 {\texttimes} 10 versus controls). Genes involved in α-dystroglycan glycosylation (FKTN, DTNA) and desmosomal signaling (DSC2, DSG2) were most highly enriched for regulatory variants (odds ratio 6.7-58.1). Functional effects were confirmed in patient myocardium and reporter assays in human cardiomyocytes, and in zebrafish CRISPR knockouts. We provide strong evidence for the genomic contribution of functionally active variants in new genes and in regulatory elements of known CMP genes to early onset CMP.

}, issn = {2056-7944}, doi = {10.1038/s41525-022-00288-y}, author = {Lesurf, Robert and Said, Abdelrahman and Akinrinade, Oyediran and Breckpot, Jeroen and Delfosse, Kathleen and Liu, Ting and Yao, Roderick and Persad, Gabrielle and McKenna, Fintan and Noche, Ramil R and Oliveros, Winona and Mattioli, Kaia and Shah, Shreya and Miron, Anastasia and Yang, Qian and Meng, Guoliang and Yue, Michelle Chan Seng and Sung, Wilson W L and Thiruvahindrapuram, Bhooma and Lougheed, Jane and Oechslin, Erwin and Mondal, Tapas and Bergin, Lynn and Smythe, John and Jayappa, Shashank and Rao, Vinay J and Shenthar, Jayaprakash and Dhandapany, Perundurai S and Semsarian, Christopher and Weintraub, Robert G and Bagnall, Richard D and Ingles, Jodie and Mel{\'e}, Marta and Maass, Philipp G and Ellis, James and Scherer, Stephen W and Mital, Seema} } @article {2293, title = {Contribution of NMDA Receptors to Synaptic Function in Rat Hippocampal Interneurons.}, journal = {eNeuro}, volume = {8}, year = {2021}, month = {2021 Jul-Aug}, abstract = {

The ability of neurons to produce behaviorally relevant activity in the absence of pathology relies on the fine balance of synaptic inhibition to excitation. In the hippocampal CA1 microcircuit, this balance is maintained by a diverse population of inhibitory interneurons that receive largely similar glutamatergic afferents as their target pyramidal cells, with EPSCs generated by both AMPA receptors (AMPARs) and NMDA receptors (NMDARs). In this study, we take advantage of a recently generated GluN2A-null rat model to assess the contribution of GluN2A subunits to glutamatergic synaptic currents in three subclasses of interneuron found in the CA1 region of the hippocampus. For both parvalbumin-positive and somatostatin-positive interneurons, the GluN2A subunit is expressed at glutamatergic synapses and contributes to the EPSC. In contrast, in cholecystokinin (CCK)-positive interneurons, the contribution of GluN2A to the EPSC is negligible. Furthermore, synaptic potentiation at glutamatergic synapses on CCK-positive interneurons does not require the activation of GluN2A-containing NMDARs but does rely on the activation of NMDARs containing GluN2B and GluN2D subunits.

}, issn = {2373-2822}, doi = {10.1523/ENEURO.0552-20.2021}, author = {Booker, Sam A and Sumera, Anna and Kind, Peter C and Wyllie, David J A} } @article {2326, title = {Correction of amygdalar dysfunction in a rat model of fragile X syndrome.}, journal = {Cell Rep}, volume = {37}, year = {2021}, month = {2021 Oct 12}, pages = {109805}, abstract = {

Fragile X syndrome (FXS), a commonly inherited form of autism and intellectual disability, is associated with emotional symptoms that implicate dysfunction of the amygdala. However, current understanding of the pathogenesis of the disease is based primarily on studies in the hippocampus and neocortex, where FXS defects have been corrected by inhibiting group I metabotropic glutamate receptors (mGluRs). Here, we observe that activation, rather than inhibition, of mGluRs in the basolateral amygdala reverses impairments in a rat model of FXS. FXS rats exhibit deficient recall of auditory conditioned fear, which is accompanied by a range of in\ vitro and in\ vivo deficits in synaptic transmission and plasticity. We find presynaptic mGluR5 in the amygdala, activation of which reverses deficient synaptic transmission and plasticity, thereby restoring normal fear learning in FXS rats. This highlights the importance of modifying the prevailing mGluR-based framework for therapeutic strategies to include circuit-specific differences in FXS pathophysiology.

}, issn = {2211-1247}, doi = {10.1016/j.celrep.2021.109805}, author = {Fernandes, Giselle and Mishra, Pradeep K and Nawaz, Mohammad Sarfaraz and Donlin-Asp, Paul G and Rahman, Mohammed Mostafizur and Hazra, Anupam and Kedia, Sonal and Kayenaat, Aiman and Songara, Dheeraj and Wyllie, David J A and Schuman, Erin M and Kind, Peter C and Chattarji, Sumantra} } @article {2323, title = {Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India.}, journal = {Science}, year = {2021}, month = {2021 Oct 14}, pages = {eabj9932}, abstract = {

Delhi, the national capital of India, has experienced multiple SARS-CoV-2 outbreaks in 2020 and reached population seropositivity of over 50\% by 2021. During April 2021, the city became overwhelmed by COVID-19 cases and fatalities, as a new variant B.1.617.2 (Delta) replaced B.1.1.7 (Alpha). A Bayesian model explains the growth advantage of Delta through a combination of increased transmissibility and reduced sensitivity to immune responses generated against earlier variants (median estimates; {\texttimes}1.5-fold, 20\% reduction). Seropositivity of an employee and family cohort increased from 42\% to 87.5\% between March and July 2021, with 27\% reinfections, as judged by increased antibody concentration after a previous decline. The likely high transmissibility and partial evasion of immunity by the Delta variant contributed to an overwhelming surge in Delhi.

}, issn = {1095-9203}, doi = {10.1126/science.abj9932}, author = {Dhar, Mahesh S and Marwal, Robin and Vs, Radhakrishnan and Ponnusamy, Kalaiarasan and Jolly, Bani and Bhoyar, Rahul C and Sardana, Viren and Naushin, Salwa and Rophina, Mercy and Mellan, Thomas A and Mishra, Swapnil and Whittaker, Charles and Fatihi, Saman and Datta, Meena and Singh, Priyanka and Sharma, Uma and Ujjainiya, Rajat and Bhatheja, Nitin and Divakar, Mohit Kumar and Singh, Manoj K and Imran, Mohamed and Senthivel, Vigneshwar and Maurya, Ranjeet and Jha, Neha and Mehta, Priyanka and A, Vivekanand and Sharma, Pooja and Vr, Arvinden and Chaudhary, Urmila and Soni, Namita and Thukral, Lipi and Flaxman, Seth and Bhatt, Samir and Pandey, Rajesh and Dash, Debasis and Faruq, Mohammed and Lall, Hemlata and Gogia, Hema and Madan, Preeti and Kulkarni, Sanket and Chauhan, Himanshu and Sengupta, Shantanu and Kabra, Sandhya and Gupta, Ravindra K and Singh, Sujeet K and Agrawal, Anurag and Rakshit, Partha and Nandicoori, Vinay and Tallapaka, Karthik Bharadwaj and Sowpati, Divya Tej and Thangaraj, K and Bashyam, Murali Dharan and Dalal, Ashwin and Sivasubbu, Sridhar and Scaria, Vinod and Parida, Ajay and Raghav, Sunil K and Prasad, Punit and Sarin, Apurva and Mayor, Satyajit and Ramakrishnan, Uma and Palakodeti, Dasaradhi and Seshasayee, Aswin Sai Narain and Bhat, Manoj and Shouche, Yogesh and Pillai, Ajay and Dikid, Tanzin and Das, Saumitra and Maitra, Arindam and Chinnaswamy, Sreedhar and Biswas, Nidhan Kumar and Desai, Anita Sudhir and Pattabiraman, Chitra and Manjunatha, M V and Mani, Reeta S and Arunachal Udupi, Gautam and Abraham, Priya and Atul, Potdar Varsha and Cherian, Sarah S} } @article {2242, title = {Mechanical instability of adherens junctions overrides intrinsic quiescence of hair follicle stem cells.}, journal = {Dev Cell}, volume = {56}, year = {2021}, month = {2021 Mar 22}, pages = {761-780.e7}, abstract = {

Vinculin, a mechanotransducer associated with both adherens junctions (AJs) and focal adhesions (FAs), plays a central role in force transmission through cell-cell and cell-substratum contacts. We generated the conditional knockout (cKO) of vinculin in murine skin that results in the loss of bulge stem cell (BuSC) quiescence and promotes continual cycling of the hair follicles. Surprisingly, we find that the AJs in vinculin cKO cells are mechanically weak and impaired in force generation despite increased junctional expression of E-cadherin and α-catenin. Mechanistically, we demonstrate that vinculin functions by keeping α-catenin in a stretched/open conformation, which in turn regulates the retention of YAP1, another potent mechanotransducer and regulator of cell proliferation, at the AJs. Altogether, our data provide mechanistic insights into the hitherto-unexplored regulatory link between the mechanical stability of cell junctions and contact-inhibition-mediated maintenance of BuSC quiescence.

}, issn = {1878-1551}, doi = {10.1016/j.devcel.2021.02.020}, author = {Biswas, Ritusree and Banerjee, Avinanda and Lembo, Sergio and Zhao, Zhihai and Lakshmanan, Vairavan and Lim, Ryan and Le, Shimin and Nakasaki, Manando and Kutyavin, Vassily and Wright, Graham and Palakodeti, Dasaradhi and Ross, Robert S and Jamora, Colin and Vasioukhin, Valeri and Jie, Yan and Raghavan, Srikala} } @article {2244, title = {Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis.}, journal = {Cell Metab}, year = {2021}, month = {2021 Mar 31}, abstract = {

Cellular senescence is a stress or damage response that causes a permanent proliferative arrest and secretion of numerous factors with potent biological activities. This senescence-associated secretory phenotype (SASP) has been characterized largely for secreted proteins that participate in embryogenesis, wound healing, inflammation, and many age-related pathologies. By contrast, lipid components of the SASP are understudied. We show that senescent cells activate the biosynthesis of several oxylipins that promote segments of the SASP and reinforce the proliferative arrest. Notably, senescent cells synthesize and accumulate an unstudied intracellular prostaglandin, 1a,1b-dihomo-15-deoxy-delta-12,14-prostaglandin J2. Released 15-deoxy-delta-12,14-prostaglandin J2 is a biomarker of senolysis in culture and in\ vivo. This and other prostaglandin D2-related lipids promote the senescence arrest and SASP by activating RAS signaling. These data identify an important aspect of cellular senescence and a method to detect senolysis.

}, issn = {1932-7420}, doi = {10.1016/j.cmet.2021.03.008}, author = {Wiley, Christopher D and Sharma, Rishi and Davis, Sonnet S and Lopez-Dominguez, Jose Alberto and Mitchell, Kylie P and Wiley, Samantha and Alimirah, Fatouma and Kim, Dong Eun and Payne, Therese and Rosko, Andrew and Aimontche, Eliezer and Deshpande, Sharvari M and Neri, Francesco and Kuehnemann, Chisaka and Demaria, Marco and Ramanathan, Arvind and Campisi, Judith} } @article {2363, title = {SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion.}, journal = {Nature}, volume = {599}, year = {2021}, month = {2021 11}, pages = {114-119}, abstract = {

The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha). In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era.

}, keywords = {Antibodies, Neutralizing, Cell Fusion, Cell Line, COVID-19 Vaccines, Female, Health Personnel, Humans, Immune Evasion, India, Kinetics, Male, SARS-CoV-2, Spike Glycoprotein, Coronavirus, Vaccination, Virus Replication}, issn = {1476-4687}, doi = {10.1038/s41586-021-03944-y}, author = {Mlcochova, Petra and Kemp, Steven A and Dhar, Mahesh Shanker and Papa, Guido and Meng, Bo and Ferreira, Isabella A T M and Datir, Rawlings and Collier, Dami A and Albecka, Anna and Singh, Sujeet and Pandey, Rajesh and Brown, Jonathan and Zhou, Jie and Goonawardane, Niluka and Mishra, Swapnil and Whittaker, Charles and Mellan, Thomas and Marwal, Robin and Datta, Meena and Sengupta, Shantanu and Ponnusamy, Kalaiarasan and Radhakrishnan, Venkatraman Srinivasan and Abdullahi, Adam and Charles, Oscar and Chattopadhyay, Partha and Devi, Priti and Caputo, Daniela and Peacock, Tom and Wattal, Chand and Goel, Neeraj and Satwik, Ambrish and Vaishya, Raju and Agarwal, Meenakshi and Mavousian, Antranik and Lee, Joo Hyeon and Bassi, Jessica and Silacci-Fegni, Chiara and Saliba, Christian and Pinto, Dora and Irie, Takashi and Yoshida, Isao and Hamilton, William L and Sato, Kei and Bhatt, Samir and Flaxman, Seth and James, Leo C and Corti, Davide and Piccoli, Luca and Barclay, Wendy S and Rakshit, Partha and Agrawal, Anurag and Gupta, Ravindra K} } @article {2289, title = {Target identification for small-molecule discovery in the FOXO3a tumor-suppressor pathway using a biodiverse peptide library.}, journal = {Cell Chem Biol}, year = {2021}, month = {2021 Jun 01}, abstract = {

Genetic screening technologies to identify and validate macromolecular interactions (MMIs) essential for complex pathways remain an important unmet need for systems biology and therapeutics development. Here, we use a library of peptides from diverse prokaryal genomes to screen MMIs promoting the nuclear relocalization of Forkhead Box O3 (FOXO3a), a tumor suppressor more frequently inactivated by post-translational modification than mutation. A hit peptide engages the 14-3-3 family of signal regulators through a phosphorylation-dependent interaction, modulates FOXO3a-mediated transcription, and suppresses cancer cell growth. In a crystal structure, the hit peptide occupies the phosphopeptide-binding groove of 14-3-3ε in a conformation distinct from its natural peptide substrates. A biophysical screen identifies drug-like small molecules that displace the hit peptide from 14-3-3ε, providing starting points for structure-guided development. Our findings exemplify "protein interference," an approach using evolutionarily diverse, natural peptides to rapidly identify, validate, and develop chemical probes against MMIs essential for complex cellular phenotypes.

}, issn = {2451-9448}, doi = {10.1016/j.chembiol.2021.05.009}, author = {Emery, Amy and Hardwick, Bryn S and Crooks, Alex T and Milech, Nadia and Watt, Paul M and Mithra, Chandan and Kumar, Vikrant and Giridharan, Saranya and Sadasivam, Gayathri and Mathivanan, Subashini and Sudhakar, Sneha and Bairy, Sneha and Bharatham, Kavitha and Hurakadli, Manjunath A and Prasad, Thazhe K and Kamariah, Neelagandan and Muellner, Markus and Coelho, Miguel and Torrance, Christopher J and McKenzie, Grahame J and Venkitaraman, Ashok R} } @article {2110, title = {Cortical neurons derived from human pluripotent stem cells lacking FMRP display altered spontaneous firing patterns.}, journal = {Mol Autism}, volume = {11}, year = {2020}, month = {2020 Jun 19}, pages = {52}, abstract = {

BACKGROUND: Fragile X syndrome (FXS), a neurodevelopmental disorder, is a leading monogenetic cause of intellectual disability and autism spectrum disorder. Notwithstanding the extensive studies using rodent and other pre-clinical models of FXS, which have provided detailed mechanistic insights into the pathophysiology of this disorder, it is only relatively recently that human stem cell-derived neurons have been employed as a model system to further our understanding of the pathophysiological events that may underlie FXS. Our study assesses the physiological properties of human pluripotent stem cell-derived cortical neurons lacking fragile X mental retardation protein (FMRP).

METHODS: Electrophysiological whole-cell voltage- and current-clamp recordings were performed on two control and three FXS patient lines of human cortical neurons derived from induced pluripotent stem cells. In addition, we also describe the properties of an isogenic pair of lines in one of which FMR1 gene expression has been silenced.

RESULTS: Neurons lacking FMRP displayed bursts of spontaneous action potential firing that were more frequent but shorter in duration compared to those recorded from neurons expressing FMRP. Inhibition of large conductance Ca-activated K currents and the persistent Na current in control neurons phenocopies action potential bursting observed in neurons lacking FMRP, while in neurons lacking FMRP pharmacological potentiation of voltage-dependent Na channels phenocopies action potential bursting observed in control neurons. Notwithstanding the changes in spontaneous action potential firing, we did not observe any differences in the intrinsic properties of neurons in any of the lines examined. Moreover, we did not detect any differences in the properties of miniature excitatory postsynaptic currents in any of the lines.

CONCLUSIONS: Pharmacological manipulations can alter the action potential burst profiles in both control and FMRP-null human cortical neurons, making them appear like their genetic counterpart. Our studies indicate that FMRP targets that have been found in rodent models of FXS are also potential targets in a human-based model system, and we suggest potential mechanisms by which activity is altered.

}, issn = {2040-2392}, doi = {10.1186/s13229-020-00351-4}, author = {Das Sharma, Shreya and Pal, Rakhi and Reddy, Bharath Kumar and Selvaraj, Bhuvaneish T and Raj, Nisha and Samaga, Krishna Kumar and Srinivasan, Durga J and Ornelas, Loren and Sareen, Dhruv and Livesey, Matthew R and Bassell, Gary J and Svendsen, Clive N and Kind, Peter C and Chandran, Siddharthan and Chattarji, Sumantra and Wyllie, David J A} } @article {2155, title = {Genetic, clinical, molecular, and pathogenic aspects of the South Asian-specific polymorphic MYBPC3 variant.}, journal = {Biophys Rev}, volume = {12}, year = {2020}, month = {2020 Aug}, pages = {1065-1084}, abstract = {

Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by ventricular enlargement, diastolic dysfunction, and increased risk for sudden cardiac death. Sarcomeric genetic defects are the predominant known cause of HCM. In particular, mutations in the myosin-binding protein C gene (MYBPC3) are associated with ~ 40\% of all HCM cases in which a genetic basis has been established. A decade ago, our group reported a 25-base pair deletion in intron 32 of MYBPC3 (MYBPC3) that is uniquely prevalent in South Asians and is associated with autosomal dominant cardiomyopathy. Although our studies suggest that this deletion results in left ventricular dysfunction, cardiomyopathies, and heart failure, the precise mechanism by which this variant predisposes to heart disease remains unclear. Increasingly appreciated, however, is the contribution of secondary risk factors, additional mutations, and lifestyle choices in augmenting or modifying the HCM phenotype in MYBPC3 carriers. Therefore, the goal of this review article is to summarize the current research dedicated to understanding the molecular pathophysiology of HCM in South Asians with the MYBPC3 variant. An emphasis is to review the latest techniques currently applied to explore the MYBPC3 pathogenesis and to provide a foundation for developing new diagnostic strategies and advances in therapeutics.

}, issn = {1867-2450}, doi = {10.1007/s12551-020-00725-1}, author = {Arif, Mohammed and Nabavizadeh, Pooneh and Song, Taejeong and Desai, Darshini and Singh, Rohit and Bazrafshan, Sholeh and Kumar, Mohit and Wang, Yigang and Gilbert, Richard J and Dhandapany, Perundurai S and Becker, Richard C and Kranias, Evangelia G and Sadayappan, Sakthivel} } @article {2203, title = {Genome-scale reconstruction of Gcn4/ATF4 networks driving a growth program.}, journal = {PLoS Genet}, volume = {16}, year = {2020}, month = {2020 12}, pages = {e1009252}, abstract = {

Growth and starvation are considered opposite ends of a spectrum. To sustain growth, cells use coordinated gene expression programs and manage biomolecule supply in order to match the demands of metabolism and translation. Global growth programs complement increased ribosomal biogenesis with sufficient carbon metabolism, amino acid and nucleotide biosynthesis. How these resources are collectively managed is a fundamental question. The role of the Gcn4/ATF4 transcription factor has been best studied in contexts where cells encounter amino acid starvation. However, high Gcn4 activity has been observed in contexts of rapid cell proliferation, and the roles of Gcn4 in such growth contexts are unclear. Here, using a methionine-induced growth program in yeast, we show that Gcn4/ATF4 is the fulcrum that maintains metabolic supply in order to sustain translation outputs. By integrating matched transcriptome and ChIP-Seq analysis, we decipher genome-wide direct and indirect roles for Gcn4 in this growth program. Genes that enable metabolic precursor biosynthesis indispensably require Gcn4; contrastingly ribosomal genes are partly repressed by Gcn4. Gcn4 directly binds promoter-regions and transcribes a subset of metabolic genes, particularly driving lysine and arginine biosynthesis. Gcn4 also globally represses lysine and arginine enriched transcripts, which include genes encoding the translation machinery. The Gcn4 dependent lysine and arginine supply thereby maintains the synthesis of the translation machinery. This is required to maintain translation capacity. Gcn4 consequently enables metabolic-precursor supply to bolster protein synthesis, and drive a growth program. Thus, we illustrate how growth and starvation outcomes are both controlled using the same Gcn4 transcriptional outputs that function in distinct contexts.

}, keywords = {Basic-Leucine Zipper Transcription Factors, Cell Proliferation, Gene Expression Regulation, Fungal, Gene Regulatory Networks, Genome, Fungal, Ribosomes, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Transcriptional Activation}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1009252}, author = {Srinivasan, Rajalakshmi and Walvekar, Adhish S and Rashida, Zeenat and Seshasayee, Aswin and Laxman, Sunil} } @article {2144, title = {Methylated PP2A stabilizes Gcn4 to enable a methionine-induced anabolic program.}, journal = {J Biol Chem}, year = {2020}, month = {2020 Oct 29}, abstract = {

Methionine, through S-adenosylmethionine, activates a multifaceted growth program in which ribosome biogenesis, carbon metabolism, amino acid and nucleotide biosynthesis are induced. This growth program requires the activity of the Gcn4 transcription factor (called ATF4 in mammals), which facilitates the supply of metabolic precursors that are essential for anabolism. However, how Gcn4 itself is regulated in the presence of methionine is unknown. Here, we discover that Gcn4 protein levels are increased by methionine, despite conditions of high cell growth and translation (where the roles of Gcn4 are not well studied). We demonstrate that this mechanism of Gcn4 induction is independent of transcription, as well as the conventional Gcn2/eIF2α-mediated increased translation of Gcn4. Instead, when methionine is abundant, Gcn4 phosphorylation is decreased, which reduces its ubiquitination and therefore degradation. Gcn4 is dephosphorylated by the protein phosphatase PP2A; our data show that when methionine is abundant, the conserved methyltransferase Ppm1 methylates and alters the activity of the catalytic subunit of PP2A, shifting the balance of Gcn4 towards a dephosphorylated, stable state. The absence of Ppm1 or the loss of the PP2A methylation destabilizes Gcn4 even when methionine is abundant, leading to collapse of the Gcn4-dependent anabolic program. These findings reveal a novel, methionine-dependent signaling and regulatory axis. Here methionine directs a conserved methyltransferase Ppm1, via its target phosphatase PP2A, to selectively stabilize Gcn4. Through this, cells conditionally modify a major phosphatase to stabilize a metabolic master-regulator and drive anabolism.

}, issn = {1083-351X}, doi = {10.1074/jbc.RA120.014248}, author = {Walvekar, Adhish S and Kadamur, Ganesh and Sreedharan, Sreesa and Gupta, Ritu and Srinivasan, Rajalakshmi and Laxman, Sunil} } @article {2205, title = {Methylated PP2A stabilizes Gcn4 to enable a methionine-induced anabolic program.}, journal = {J Biol Chem}, volume = {295}, year = {2020}, month = {2020 Dec 25}, pages = {18390-18405}, abstract = {

Methionine, through S-adenosylmethionine, activates a multifaceted growth program in which ribosome biogenesis, carbon metabolism, and amino acid and nucleotide biosynthesis are induced. This growth program requires the activity of the Gcn4 transcription factor (called ATF4 in mammals), which facilitates the supply of metabolic precursors that are essential for anabolism. However, how Gcn4 itself is regulated in the presence of methionine is unknown. Here, we discover that Gcn4 protein levels are increased by methionine, despite conditions of high cell growth and translation (in which the roles of Gcn4 are not well-studied). We demonstrate that this mechanism of Gcn4 induction is independent of transcription, as well as the conventional Gcn2/eIF2α-mediated increased translation of Gcn4. Instead, when methionine is abundant, Gcn4 phosphorylation is decreased, which reduces its ubiquitination and therefore degradation. Gcn4 is dephosphorylated by the protein phosphatase 2A (PP2A); our data show that when methionine is abundant, the conserved methyltransferase Ppm1 methylates and alters the activity of the catalytic subunit of PP2A, shifting the balance of Gcn4 toward a dephosphorylated, stable state. The absence of Ppm1 or the loss of the PP2A methylation destabilizes Gcn4 even when methionine is abundant, leading to collapse of the Gcn4-dependent anabolic program. These findings reveal a novel, methionine-dependent signaling and regulatory axis. Here methionine directs the conserved methyltransferase Ppm1 via its target phosphatase PP2A to selectively stabilize Gcn4. Through this, cells conditionally modify a major phosphatase to stabilize a metabolic master regulator and drive anabolism.

}, issn = {1083-351X}, doi = {10.1074/jbc.RA120.014248}, author = {Walvekar, Adhish S and Kadamur, Ganesh and Sreedharan, Sreesa and Gupta, Ritu and Srinivasan, Rajalakshmi and Laxman, Sunil} } @article {2150, title = {The Rad53-Spt21 and Tel1 axes couple glucose tolerance to histone dosage and subtelomeric silencing.}, journal = {Nat Commun}, volume = {11}, year = {2020}, month = {2020 08 19}, pages = {4154}, abstract = {

The DNA damage response (DDR) coordinates DNA metabolism with nuclear and non-nuclear processes. The DDR kinase Rad53 controls histone degradation to assist DNA repair. However, Rad53 deficiency causes histone-dependent growth defects in the absence of DNA damage, pointing out unknown physiological functions of the Rad53-histone axis. Here we show that histone dosage control by Rad53 ensures metabolic homeostasis. Under physiological conditions, Rad53 regulates histone levels through inhibitory phosphorylation of the transcription factor Spt21 on Ser276. Rad53-Spt21 mutants display severe glucose dependence, caused by excess histones through two separable mechanisms: dampening of acetyl-coenzyme A-dependent carbon metabolism through histone hyper-acetylation, and Sirtuin-mediated silencing of starvation-induced subtelomeric domains. We further demonstrate that repression of subtelomere silencing by physiological Tel1 and Rpd3 activities coveys tolerance to glucose restriction. Our findings identify DDR mutations, histone imbalances and aberrant subtelomeric chromatin as interconnected causes of glucose dependence, implying that DDR kinases coordinate metabolism and epigenetic changes.

}, keywords = {Acetylation, Ataxia Telangiectasia Mutated Proteins, Cell Cycle Proteins, Checkpoint Kinase 2, DNA Damage, DNA Repair, Gene Silencing, Glucose, Histone Deacetylases, Histones, Intracellular Signaling Peptides and Proteins, Mutation, Phosphorylation, Protein-Serine-Threonine Kinases, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Serine, Telomere, Transcription Factors}, issn = {2041-1723}, doi = {10.1038/s41467-020-17961-4}, author = {Bruhn, Christopher and Ajazi, Arta and Ferrari, Elisa and Lanz, Michael Charles and Batrin, Renaud and Choudhary, Ramveer and Walvekar, Adhish and Laxman, Sunil and Longhese, Maria Pia and Fabre, Emmanuelle and Smolka, Marcus Bustamente and Foiani, Marco} } @article {2204, title = {Resource plasticity-driven carbon-nitrogen budgeting enables specialization and division of labor in a clonal community.}, journal = {Elife}, volume = {9}, year = {2020}, month = {2020 09 02}, abstract = {

Previously, we found that in glucose-limited colonies, metabolic constraints drive cells into groups exhibiting gluconeogenic or glycolytic states. In that study, threshold amounts of trehalose - a limiting, produced carbon-resource, controls the emergence and self-organization of cells exhibiting the glycolytic state, serving as a carbon source that fuels glycolysis (Varahan et al., 2019). We now discover that the plasticity of use of a non-limiting resource, aspartate, controls both resource production and the emergence of heterogeneous cell states, based on differential metabolic budgeting. In gluconeogenic cells, aspartate is a carbon source for trehalose production, while in glycolytic cells using trehalose for carbon, aspartate is predominantly a nitrogen source for nucleotide synthesis. This metabolic plasticity of aspartate enables carbon-nitrogen budgeting, thereby driving the biochemical self-organization of distinct cell states. Through this organization, cells in each state exhibit true division of labor, providing growth/survival advantages for the whole community.

}, issn = {2050-084X}, doi = {10.7554/eLife.57609}, author = {Varahan, Sriram and Sinha, Vaibhhav and Walvekar, Adhish and Krishna, Sandeep and Laxman, Sunil} } @article {1603, title = {Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway.}, journal = {Nat Commun}, volume = {10}, year = {2019}, month = {2019 01 09}, pages = {89}, abstract = {

The importance of gut microbiota in human health and pathophysiology is undisputable. Despite the abundance of metagenomics data, the functional dynamics of gut microbiota in human health and disease remain elusive. Urolithin A (UroA), a major microbial metabolite derived from polyphenolics of berries and pomegranate fruits displays anti-inflammatory, anti-oxidative, and anti-ageing activities. Here, we show that UroA and its potent synthetic analogue (UAS03) significantly enhance gut barrier function and inhibit unwarranted inflammation. We demonstrate that UroA and UAS03 exert their barrier functions through activation of aryl hydrocarbon receptor (AhR)- nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent pathways to upregulate epithelial tight junction proteins. Importantly, treatment with these compounds attenuated colitis in pre-clinical models by remedying barrier dysfunction in addition to anti-inflammatory activities. Cumulatively, the results highlight how microbial metabolites provide two-pronged beneficial activities at gut epithelium by enhancing barrier functions and reducing inflammation to protect from colonic diseases.

}, keywords = {Animals, Basic Helix-Loop-Helix Transcription Factors, Caco-2 Cells, Coumarins, Epithelial Cells, Gene Expression Regulation, HT29 Cells, Humans, Intestinal Mucosa, Macrophages, Mice, Mice, Inbred C57BL, Mice, Knockout, NF-E2-Related Factor 2, Receptors, Aryl Hydrocarbon, Specific Pathogen-Free Organisms, Tight Junction Proteins}, issn = {2041-1723}, doi = {10.1038/s41467-018-07859-7}, author = {Singh, Rajbir and Chandrashekharappa, Sandeep and Bodduluri, Sobha R and Baby, Becca V and Hegde, Bindu and Kotla, Niranjan G and Hiwale, Ankita A and Saiyed, Taslimarif and Patel, Paresh and Vijay-Kumar, Matam and Langille, Morgan G I and Douglas, Gavin M and Cheng, Xi and Rouchka, Eric C and Waigel, Sabine J and Dryden, Gerald W and Alatassi, Houda and Zhang, Huang-Ge and Haribabu, Bodduluri and Vemula, Praveen K and Jala, Venkatakrishna R} } @article {1608, title = {Graft-implanted, enzyme responsive, tacrolimus-eluting hydrogel enables long-term survival of orthotopic porcine limb vascularized composite allografts: A proof of concept study.}, journal = {PLoS One}, volume = {14}, year = {2019}, month = {2019}, pages = {e0210914}, abstract = {

BACKGROUND: Currently, patients receiving vascularized composite allotransplantation (VCA) grafts must take long-term systemic immunosuppressive therapy to prevent immunologic rejection. The morbidity and mortality associated with these medications is the single greatest barrier to more patients being able to receive these life-enhancing transplants. In contrast to solid organs, VCA, exemplified by hand or face transplants, allow visual diagnosis of clinical acute rejection (AR), directed biopsy and targeted graft therapies. Local immunosuppression in VCA could reduce systemic drug exposure and limit adverse effects. This proof of concept study evaluated, in a large animal forelimb VCA model, the efficacy and tolerability of a novel graft-implanted enzyme-responsive, tacrolimus (TAC)-eluting hydrogel platform, in achieving long-term graft survival.

METHODS: Orthotopic forelimb VCA were performed in single haplotype mismatched mini-swine. Controls (n = 2) received no treatment. Two groups received TAC hydrogel: high dose (n = 4, 91 mg TAC) and low dose (n = 4, 49 mg TAC). The goal was to find a dose that was tolerable and resulted in long-term graft survival. Limbs were evaluated for clinical and histopathological signs of AR. TAC levels were measured in serial blood and skin tissue samples. Tolerability of the dose was evaluated by monitoring animal feeding behavior and weight.

RESULTS: Control limbs underwent Banff Grade IV AR by post-operative day six. Low dose TAC hydrogel treatment resulted in long-term graft survival time to onset of Grade IV AR ranging from 56 days to 93 days. High dose TAC hydrogel also resulted in long-term graft survival (24 to 42 days), but was not well tolerated.

CONCLUSION: Graft-implanted TAC-loaded hydrogel delays the onset of Grade IV AR of mismatched porcine forelimb VCA grafts, resulting in long term graft survival and demonstrates dose-dependent tolerability.

}, issn = {1932-6203}, doi = {10.1371/journal.pone.0210914}, author = {Fries, C Anton and Lawson, Shari D and Wang, Lin C and Slaughter, Kai V and Vemula, Praveen K and Dhayani, Ashish and Joshi, Nitin and Karp, Jeffrey M and Rickard, Rory F and Gorantla, Vijay S and Davis, Michael R} } @article {1741, title = {Metabolic constraints drive self-organization of specialized cell groups.}, journal = {Elife}, volume = {8}, year = {2019}, month = {2019 Jun 26}, abstract = {

How phenotypically distinct states in isogenic cell populations appear and stably co-exist remains unresolved. We find that within a mature, clonal yeast colony developing in low glucose, cells arrange into metabolically disparate cell groups. Using this system, we model and experimentally identify metabolic constraints sufficient to drive such self-assembly. Beginning in a uniformly gluconeogenic state, cells exhibiting a contrary, high pentose phosphate pathway activity state, spontaneously appear and proliferate, in a spatially constrained manner. Gluconeogenic cells in the colony produce and provide a resource, which we identify as trehalose. Above threshold concentrations of external trehalose, cells switch to the new metabolic state and proliferate. A self-organized system establishes, where cells in this new state are sustained by trehalose consumption, which thereby restrains other cells in the trehalose producing, gluconeogenic state. Our work suggests simple physico-chemical principles that determine how isogenic cells spontaneously self-organize into structured assemblies in complimentary, specialized states.

}, issn = {2050-084X}, doi = {10.7554/eLife.46735}, author = {Varahan, Sriram and Walvekar, Adhish and Sinha, Vaibhhav and Krishna, Sandeep and Laxman, Sunil} } @article {1988, title = {Methionine at the Heart of Anabolism and Signaling: Perspectives From Budding Yeast.}, journal = {Front Microbiol}, volume = {10}, year = {2019}, month = {2019}, pages = {2624}, abstract = {

Studies using a fungal model, , have been instrumental in advancing our understanding of sulfur metabolism in eukaryotes. Sulfur metabolites, particularly methionine and its derivatives, induce anabolic programs in yeast, and drive various processes integral to metabolism (one-carbon metabolism, nucleotide synthesis, and redox balance). Thereby, methionine also connects these processes with autophagy and epigenetic regulation. The direct involvement of methionine-derived metabolites in diverse chemistries such as transsulfuration and methylation reactions comes from the elegant positioning and safe handling of sulfur through these molecules. In this mini-review, we highlight studies from yeast that reveal how this amino acid holds a unique position in both metabolism and cell signaling, and illustrate cell fate decisions that methionine governs. We further discuss the interconnections between sulfur and NADPH metabolism, and highlight critical nodes around methionine metabolism that are promising for antifungal drug development.

}, issn = {1664-302X}, doi = {10.3389/fmicb.2019.02624}, author = {Walvekar, Adhish S and Laxman, Sunil} } @article {1990, title = {Relax, Don{\textquoteright}t RAN Translate It.}, journal = {Neuron}, volume = {104}, year = {2019}, month = {2019 Dec 04}, pages = {827-829}, abstract = {

The (GGGGCC)n repeat expansion in C9orf72, which is the most common cause of frontotemporal dementia and amyotrophic lateral sclerosis, is translated through repeat-associated non-AUG (RAN) translation. In this issue of Neuron, Cheng et\ al. (2019) report that the helicase DDX3X, which unwinds (or relaxes) RNA, suppresses RAN translation and toxicity.

}, issn = {1097-4199}, doi = {10.1016/j.neuron.2019.11.014}, author = {Wilson, Katherine M and Muralidharan, Bhavana and Isaacs, Adrian M} } @article {1989, title = {Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis.}, journal = {JCI Insight}, volume = {4}, year = {2019}, month = {2019 Dec 19}, abstract = {

Accumulation of senescent cells is associated with the progression of pulmonary fibrosis, but mechanisms accounting for this linkage are not well understood. To explore this issue, we investigated whether a class of biologically active profibrotic lipids, the leukotrienes (LT), is part of the senescence-associated secretory phenotype. The analysis of conditioned medium (CM), lipid extracts, and gene expression of LT biosynthesis enzymes revealed that senescent cells secreted LT, regardless of the origin of the cells or the modality of senescence induction. The synthesis of LT was biphasic and followed by antifibrotic prostaglandin (PG) secretion. The LT-rich CM of senescent lung fibroblasts (IMR-90) induced profibrotic signaling in naive fibroblasts, which were abrogated by inhibitors of ALOX5, the principal enzyme in LT biosynthesis. The bleomycin-induced expression of genes encoding LT and PG synthases, level of cysteinyl LT in the bronchoalveolar lavage, and overall fibrosis were reduced upon senescent cell removal either in a genetic mouse model or after senolytic treatment. Quantification of ALOX5+ cells in lung explants obtained from idiopathic pulmonary fibrosis (IPF) patients indicated that half of these cells were also senescent (p16Ink4a+). Unlike human fibroblasts from unused donor lungs made senescent by irradiation, senescent IPF fibroblasts secreted LTs but failed to synthesize PGs. This study demonstrates for the first time to our knowledge that senescent cells secrete functional LTs, significantly contributing to the LT pool known to cause or exacerbate IPF.

}, issn = {2379-3708}, doi = {10.1172/jci.insight.130056}, author = {Wiley, Christopher D and Brumwell, Alexis N and Davis, Sonnet S and Jackson, Julia R and Valdovinos, Alexis and Calhoun, Cheresa and Alimirah, Fatouma and Castellanos, Carlos A and Ruan, Richard and Wei, Ying and Chapman, Harold A and Ramanathan, Arvind and Campisi, Judith and Jourdan Le Saux, Claude} } @article {1738, title = {Sustained correction of associative learning deficits after brief, early treatment in a rat model of Fragile X Syndrome.}, journal = {Sci Transl Med}, volume = {11}, year = {2019}, month = {2019 May 29}, abstract = {

Fragile X Syndrome (FXS) is one of the most common monogenic forms of autism and intellectual disability. Preclinical studies in animal models have highlighted the potential of pharmaceutical intervention strategies for alleviating the symptoms of FXS. However, whether treatment strategies can be tailored to developmental time windows that define the emergence of particular phenotypes is unknown. Similarly, whether a brief, early intervention can have long-lasting beneficial effects, even after treatment cessation, is also unknown. To address these questions, we first examined the developmental profile for the acquisition of associative learning in a rat model of FXS. Associative memory was tested using a range of behavioral paradigms that rely on an animal{\textquoteright}s innate tendency to explore novelty. knockout (KO) rats showed a developmental delay in their acquisition of object-place recognition and did not demonstrate object-place-context recognition paradigm at any age tested (up to 23 weeks of age). Treatment of KO rats with lovastatin between 5 and 9 weeks of age, during the normal developmental period that this associative memory capability is established, prevents the emergence of deficits but has no effect in wild-type animals. Moreover, we observe no regression of cognitive performance in the FXS rats over several months after treatment. This restoration of the normal developmental trajectory of cognitive function is associated with the sustained rescue of both synaptic plasticity and altered protein synthesis. The findings provide proof of concept that the impaired emergence of the cognitive repertoire in neurodevelopmental disorders may be prevented by brief, early pharmacological intervention.

}, issn = {1946-6242}, doi = {10.1126/scitranslmed.aao0498}, author = {Asiminas, Antonis and Jackson, Adam D and Louros, Susana R and Till, Sally M and Spano, Teresa and Dando, Owen and Bear, Mark F and Chattarji, Sumantra and Hardingham, Giles E and Osterweil, Emily K and Wyllie, David J A and Wood, Emma R and Kind, Peter C} } @article {1743, title = {A tRNA modification balances carbon and nitrogen metabolism by regulating phosphate homeostasis.}, journal = {Elife}, volume = {8}, year = {2019}, month = {2019 Jul 01}, abstract = {

Cells must appropriately sense and integrate multiple metabolic resources to commit to proliferation. Here, we report that cells regulate carbon and nitrogen metabolic homeostasis through tRNA U-thiolation. Despite amino acid sufficiency, tRNA-thiolation deficient cells appear amino acid starved. In these cells, carbon flux towards nucleotide synthesis decreases, and trehalose synthesis increases, resulting in a starvation-like metabolic signature. Thiolation mutants have only minor translation defects. However, in these cells phosphate homeostasis genes are strongly down-regulated, resulting in an effectively phosphate-limited state. Reduced phosphate enforces a metabolic switch, where glucose-6-phosphate is routed towards storage carbohydrates. Notably, trehalose synthesis, which releases phosphate and thereby restores phosphate availability, is central to this metabolic rewiring. Thus, cells use thiolated tRNAs to perceive amino acid sufficiency, balance carbon and amino acid metabolic flux and grow optimally, by controlling phosphate availability. These results further biochemically explain how phosphate availability determines a switch to a {\textquoteright}starvation-state{\textquoteright}.

}, issn = {2050-084X}, doi = {10.7554/eLife.44795}, author = {Gupta, Ritu and Walvekar, Adhish and Liang, Shun and Rashida, Zeenat and Shah, Premal and Laxman, Sunil} } @article {1192, title = {Automation aided optimization of cloning, expression and purification of enzymes of the bacterial sialic acid catabolic and sialylation pathways enzymes for structural studies.}, journal = {Microb Biotechnol}, volume = {11}, year = {2018}, month = {2018 Mar}, pages = {420-428}, abstract = {

The process of obtaining a well-expressing, soluble and correctly folded constructs can be made easier and quicker by automating the optimization of cloning, expression and purification. While there are many semiautomated pipelines available for cloning, expression and purification, there is hardly any pipeline that involves complete automation. Here, we achieve complete automation of all the steps involved in cloning and in\ vivo expression screening. This is demonstrated using 18 genes involved in sialic acid catabolism and the surface sialylation pathway. Our main objective was to clone these genes into a His-tagged Gateway vector, followed by their small-scale expression optimization in\ vivo. The constructs that showed best soluble expression were then selected for purification studies and scaled up for crystallization studies. Our technique allowed us to quickly find conditions for producing significant quantities of soluble proteins in Escherichia coli, their large-scale purification and successful crystallization of a number of these proteins. The method can be implemented in other cases where one needs to screen a large number of constructs, clones and expression vectors for successful recombinant production of functional proteins.

}, issn = {1751-7915}, doi = {10.1111/1751-7915.13041}, author = {Bairy, Sneha and Gopalan, Lakshmi Narayanan and Setty, Thanuja Gangi and Srinivasachari, Sathya and Manjunath, Lavanyaa and Kumar, Jay Prakash and Guntupalli, Sai R and Bose, Sucharita and Nayak, Vinod and Ghosh, Swagatha and Sathyanarayanan, Nitish and Caing-Carlsson, Rhawnie and Wahlgren, Weixiao Yuan and Friemann, Rosmarie and Ramaswamy, S and Neerathilingam, Muniasamy} } @article {1585, title = {Experiential contributions to social dominance in a rat model of fragile-X syndrome.}, journal = {Proc Biol Sci}, volume = {285}, year = {2018}, month = {2018 Jun 13}, abstract = {

Social withdrawal is one phenotypic feature of the monogenic neurodevelopmental disorder fragile-X. Using a {\textquoteright}knockout{\textquoteright} rat model of fragile-X, we examined whether deletion of the gene that causes this condition would affect the ability to form and express a social hierarchy as measured in a tube test. Male fragile-X {\textquoteright}knockout{\textquoteright} rats living together could successfully form a social dominance hierarchy, but were significantly subordinate to wild-type animals in mixed group cages. Over 10 days of repeated testing, the fragile-X mutant rats gradually showed greater variance and instability of rank during their tube-test encounters. This affected the outcome of future encounters with stranger animals from other cages, with the initial phenotype of wild-type dominance lost to a more complex picture that reflected, regardless of genotype, the prior experience of winning or losing. Our findings offer a novel insight into the complex dynamics of social interactions between laboratory living groups of fragile-X and wild-type rats. Even though this is a monogenic condition, experience has an impact upon future interactions with other animals. Gene/environment interactions should therefore be considered in the development of therapeutics.

}, issn = {1471-2954}, doi = {10.1098/rspb.2018.0294}, author = {Saxena, K and Webster, J and Hallas-Potts, A and Mackenzie, R and Spooner, P A and Thomson, D and Kind, P and Chatterji, S and Morris, R G M} } @article {1155, title = {"Just a spoonful of sugar...": import of sialic acid across bacterial cell membranes.}, journal = {Biophys Rev}, volume = {10}, year = {2018}, month = {2018 Apr}, pages = {219-227}, abstract = {

Eukaryotic cell surfaces are decorated with a complex array of glycoconjugates that are usually capped with sialic acids, a large family of over 50 structurally distinct nine-carbon amino sugars, the most common member of which is N-acetylneuraminic acid. Once made available through the action of neuraminidases, bacterial pathogens and commensals utilise host-derived sialic acid by degrading it for energy or repurposing the sialic acid onto their own cell surface to camouflage the bacterium from the immune system. A functional sialic acid transporter has been shown to be essential for the uptake of sialic acid in a range of human bacterial pathogens and important for host colonisation and persistence. Here, we review the state-of-play in the field with respect to the molecular mechanisms by which these bio-nanomachines transport sialic acids across bacterial cell membranes.

}, issn = {1867-2450}, doi = {10.1007/s12551-017-0343-x}, author = {North, Rachel A and Horne, Christopher R and Davies, James S and Remus, Daniela M and Muscroft-Taylor, Andrew C and Goyal, Parveen and Wahlgren, Weixiao Yuan and Ramaswamy, S and Friemann, Rosmarie and Dobson, Renwick C J} } @article {1596, title = {Methionine coordinates a hierarchically organized anabolic program enabling proliferation.}, journal = {Mol Biol Cell}, year = {2018}, month = {2018 Oct 24}, pages = {mbcE18080515}, abstract = {

Methionine availability during overall amino acid limitation metabolically reprograms cells to support proliferation, the underlying basis for which remains unclear. Here, we construct the organization of this methionine mediated anabolic program, using yeast. Combining comparative transcriptome analysis, biochemical and metabolic flux based approaches, we discover that methionine rewires overall metabolic outputs by increasing the activity of a key regulatory node. This comprises of: the pentose phosphate pathway (PPP) coupled with reductive biosynthesis, the glutamate dehydrogenase (GDH) dependent synthesis of glutamate/glutamine, and pyridoxal-5-phosphate (PLP) dependent transamination capacity. This PPP-GDH-PLP node provides the required cofactors and/or substrates for subsequent rate-limiting reactions in the synthesis of amino acids, and therefore nucleotides. These rate-limiting steps in amino acid biosynthesis are also induced in a methionine-dependent manner. This thereby results in a biochemical cascade establishing a hierarchically organized anabolic program. For this methionine mediated anabolic program to be sustained, cells co-opt a "starvation stress response" regulator, Gcn4p. Collectively, our data suggest a hierarchical metabolic framework explaining how methionine mediates an anabolic switch.

}, issn = {1939-4586}, doi = {10.1091/mbc.E18-08-0515}, author = {Walvekar, Adhish S and Srinivasan, Rajalakshmi and Gupta, Ritu and Laxman, Sunil} } @article {1588, title = {The Sodium Sialic Acid Symporter From Has Altered Substrate Specificity.}, journal = {Front Chem}, volume = {6}, year = {2018}, month = {2018}, pages = {233}, abstract = {

Mammalian cell surfaces are decorated with complex glycoconjugates that terminate with negatively charged sialic acids. Commensal and pathogenic bacteria can use host-derived sialic acids for a competitive advantage, but require a functional sialic acid transporter to import the sugar into the cell. This work investigates the sodium sialic acid symporter (SiaT) from (SiaT). We demonstrate that SiaT rescues an strain lacking its endogenous sialic acid transporter when grown on the sialic acids -acetylneuraminic acid (Neu5Ac) or -glycolylneuraminic acid (Neu5Gc). We then develop an expression, purification and detergent solubilization system for SiaT and demonstrate that the protein is largely monodisperse in solution with a stable monomeric oligomeric state. Binding studies reveal that SiaT has a higher affinity for Neu5Gc over Neu5Ac, which was unexpected and is not seen in another SiaT homolog. We develop a homology model and use comparative sequence analyses to identify substitutions in the substrate-binding site of SiaT that may explain the altered specificity. SiaT is shown to be electrogenic, and transport is dependent upon more than one Na ion for every sialic acid molecule. A functional sialic acid transporter is essential for the uptake and utilization of sialic acid in a range of pathogenic bacteria, and developing new inhibitors that target these transporters is a valid mechanism for inhibiting bacterial growth. By demonstrating a route to functional recombinant SiaT, and developing the and assay systems, our work underpins the design of inhibitors to this transporter.

}, issn = {2296-2646}, doi = {10.3389/fchem.2018.00233}, author = {North, Rachel A and Wahlgren, Weixiao Y and Remus, Daniela M and Scalise, Mariafrancesca and Kessans, Sarah A and Dunevall, Elin and Claesson, Elin and Soares da Costa, Tatiana P and Perugini, Matthew A and Ramaswamy, S and Allison, Jane R and Indiveri, Cesare and Friemann, Rosmarie and Dobson, Renwick C J} } @article {1147, title = {Substrate-bound outward-open structure of a Na-coupled sialic acid symporter reveals a new Na site.}, journal = {Nat Commun}, volume = {9}, year = {2018}, month = {2018 May 01}, pages = {1753}, abstract = {

Many pathogenic bacteria utilise sialic acids as an energy source or use them as an external coating to evade immune detection. As such, bacteria that colonise sialylated environments deploy specific transporters to mediate import of scavenged sialic acids. Here, we report a substrate-bound 1.95 {\r A} resolution structure and subsequent characterisation of SiaT, a sialic acid transporter from Proteus mirabilis. SiaT is a secondary active transporter of the sodium solute symporter (SSS) family, which use Na gradients to drive the uptake of extracellular substrates. SiaT adopts the LeuT-fold and is in an outward-open conformation in complex with the sialic acid N-acetylneuraminic acid and two Na ions. One Na binds to the conserved Na2 site, while the second Na binds to a new position, termed Na3, which is conserved in many SSS family members. Functional and molecular dynamics studies validate the substrate-binding site and demonstrate that both Na sites regulate N-acetylneuraminic acid transport.

}, issn = {2041-1723}, doi = {10.1038/s41467-018-04045-7}, author = {Wahlgren, Weixiao Y and Dunevall, Elin and North, Rachel A and Paz, Aviv and Scalise, Mariafrancesca and Bisignano, Paola and Bengtsson-Palme, Johan and Goyal, Parveen and Claesson, Elin and Caing-Carlsson, Rhawnie and Andersson, Rebecka and Beis, Konstantinos and Nilsson, Ulf J and Farewell, Anne and Pochini, Lorena and Indiveri, Cesare and Grabe, Michael and Dobson, Renwick C J and Abramson, Jeff and Ramaswamy, S and Friemann, Rosmarie} } @article {1146, title = {Towards an arthritis flare-responsive drug delivery system.}, journal = {Nat Commun}, volume = {9}, year = {2018}, month = {2018 Apr 03}, pages = {1275}, abstract = {

Local delivery of therapeutics for the treatment of inflammatory arthritis (IA) is limited by short intra-articular half-lives. Since IA severity often fluctuates over time, a local drug delivery method that titrates drug release to arthritis activity would represent an attractive paradigm in IA therapy. Here we report the development of a hydrogel platform that exhibits disassembly and drug release controlled by the concentration of enzymes expressed during arthritis flares. In vitro, hydrogel loaded with triamcinolone acetonide (TA) releases drug on-demand upon exposure to enzymes or synovial fluid from patients with rheumatoid arthritis. In arthritic mice, hydrogel loaded with a fluorescent dye demonstrates flare-dependent disassembly measured as loss of fluorescence. Moreover, a single dose of TA-loaded hydrogel but not the equivalent dose of locally injected free TA reduces arthritis activity in the injected paw. Together, our data suggest flare-responsive hydrogel as a promising next-generation drug delivery approach for the treatment of IA.

}, issn = {2041-1723}, doi = {10.1038/s41467-018-03691-1}, author = {Joshi, Nitin and Yan, Jing and Levy, Seth and Bhagchandani, Sachin and Slaughter, Kai V and Sherman, Nicholas E and Amirault, Julian and Wang, Yufeng and Riegel, Logan and He, Xueyin and Rui, Tan Shi and Valic, Michael and Vemula, Praveen K and Miranda, Oscar R and Levy, Oren and Gravallese, Ellen M and Aliprantis, Antonios O and Ermann, Joerg and Karp, Jeffrey M} } @article {1594, title = {A versatile LC-MS/MS approach for comprehensive, quantitative analysis of central metabolic pathways.}, journal = {Wellcome Open Res}, volume = {3}, year = {2018}, month = {2018}, pages = {122}, abstract = {

Liquid chromatography-mass spectrometry (LC-MS/MS) based approaches are widely used for the identification and quantitation of specific metabolites, and are a preferred approach towards analyzing cellular metabolism. Most methods developed come with specific requirements such as unique columns, ion-pairing reagents and pH conditions, and typically allow measurements in a specific pathway alone. Here, we present a single column-based set of methods for simultaneous coverage of multiple pathways, primarily focusing on central carbon, amino acid, and nucleotide metabolism. We further demonstrate the use of this method for quantitative, stable isotope-based metabolic flux experiments, expanding its use beyond steady-state level measurements of metabolites. The expected kinetics of label accumulation pertinent to the pathway under study are presented with some examples. The methods discussed here are broadly applicable, minimize the need for multiple chromatographic resolution methods, and highlight how simple labeling experiments can be valuable in facilitating a comprehensive understanding of the metabolic state of cells.

}, issn = {2398-502X}, doi = {10.12688/wellcomeopenres.14832.1}, author = {Walvekar, Adhish and Rashida, Zeenat and Maddali, Hemanth and Laxman, Sunil} } @article {1156, title = {Stimulation of hair follicle stem cell proliferation through an IL-1 dependent activation of γδT-cells.}, journal = {Elife}, volume = {6}, year = {2017}, month = {2017 Dec 04}, abstract = {

The cutaneous wound-healing program is a product of a complex interplay among diverse cell types within the skin. One fundamental process that is mediated by these reciprocal interactions is the mobilization of local stem cell pools to promote tissue regeneration and repair. Using the ablation of epidermal caspase-8 as a model of wound healing in , we analyzed the signaling components responsible for epithelial stem cell proliferation. We found that IL-1α and IL-7 secreted from keratinocytes work in tandem to expand the activated population of resident epidermal γδT-cells. A downstream effect of activated γδT-cells is the preferential proliferation of hair follicle stem cells. By contrast, IL-1α-dependent stimulation of dermal fibroblasts optimally stimulates epidermal stem cell proliferation. These findings provide new mechanistic insights into the regulation and function of epidermal cell-immune cell interactions and into how components that are classically associated with inflammation can differentially influence distinct stem cell niches within a tissue.

}, issn = {2050-084X}, doi = {10.7554/eLife.28875}, author = {Lee, Pedro and Gund, Rupali and Dutta, Abhik and Pincha, Neha and Rana, Isha and Ghosh, Subhasri and Witherden, Deborah and Kandyba, Eve and MacLeod, Amanda and Kobielak, Krzysztof and Havran, Wendy L and Jamora, Colin} } @article {1173, title = {Stochastic steps in secondary active sugar transport.}, journal = {Proc Natl Acad Sci U S A}, volume = {113}, year = {2016}, month = {2016 07 05}, pages = {E3960-6}, abstract = {

Secondary active transporters, such as those that adopt the leucine-transporter fold, are found in all domains of life, and they have the unique capability of harnessing the energy stored in ion gradients to accumulate small molecules essential for life as well as expel toxic and harmful compounds. How these proteins couple ion binding and transport to the concomitant flow of substrates is a fundamental structural and biophysical question that is beginning to be answered at the atomistic level with the advent of high-resolution structures of transporters in different structural states. Nonetheless, the dynamic character of the transporters, such as ion/substrate binding order and how binding triggers conformational change, is not revealed from static structures, yet it is critical to understanding their function. Here, we report a series of molecular simulations carried out on the sugar transporter vSGLT that lend insight into how substrate and ions are released from the inward-facing state of the transporter. Our simulations reveal that the order of release is stochastic. Functional experiments were designed to test this prediction on the human homolog, hSGLT1, and we also found that cytoplasmic release is not ordered, but we confirmed that substrate and ion binding from the extracellular space is ordered. Our findings unify conflicting published results concerning cytoplasmic release of ions and substrate and hint at the possibility that other transporters in the superfamily may lack coordination between ions and substrate in the inward-facing state.

}, keywords = {Glucose, HEK293 Cells, Humans, Markov Chains, Molecular Dynamics Simulation, Monte Carlo Method, Patch-Clamp Techniques, Sodium, Sodium-Glucose Transporter 1}, issn = {1091-6490}, doi = {10.1073/pnas.1525378113}, author = {Adelman, Joshua L and Ghezzi, Chiara and Bisignano, Paola and Loo, Donald D F and Choe, Seungho and Abramson, Jeff and Rosenberg, John M and Wright, Ernest M and Grabe, Michael} } @article {398, title = {Conserved hippocampal cellular pathophysiology but distinct behavioural deficits in a new rat model of FXS.}, journal = {Hum Mol Genet}, volume = {24}, year = {2015}, month = {2015 Nov 1}, pages = {5977-84}, abstract = {

Recent advances in techniques for manipulating genomes have allowed the generation of transgenic animals other than mice. These new models enable cross-mammalian comparison of neurological disease from core cellular pathophysiology to circuit and behavioural endophenotypes. Moreover they will enable us to directly test whether common cellular dysfunction or behavioural outcomes of a genetic mutation are more conserved across species. Using a new rat model of Fragile X Syndrome, we report that Fmr1 knockout (KO) rats exhibit elevated basal protein synthesis and an increase in mGluR-dependent long-term depression in CA1 of the hippocampus that is independent of new protein synthesis. These defects in plasticity are accompanied by an increase in dendritic spine density selectively in apical dendrites and subtle changes in dendritic spine morphology of CA1 pyramidal neurons. Behaviourally, Fmr1 KO rats show deficits in hippocampal-dependent, but not hippocampal-independent, forms of associative recognition memory indicating that the loss of fragile X mental retardation protein (FMRP) causes defects in episodic-like memory. In contrast to previous reports from mice, Fmr1 KO rats show no deficits in spatial reference memory reversal learning. One-trial spatial learning in a delayed matching to place water maze task was also not affected by the loss of FMRP in rats. This is the first evidence for conservation across mammalian species of cellular and physiological hippocampal phenotypes associated with the loss of FMRP. Furthermore, while key cellular phenotypes are conserved they manifest in distinct behavioural dysfunction. Finally, our data reveal novel information about the selective role of FMRP in hippocampus-dependent associative memory.

}, issn = {1460-2083}, doi = {10.1093/hmg/ddv299}, author = {Till, Sally M and Asiminas, Antonis and Jackson, Adam D and Katsanevaki, Danai and Barnes, Stephanie A and Osterweil, Emily K and Bear, Mark F and Chattarji, Sumantra and Wood, Emma R and Wyllie, David J A and Kind, Peter C} }