@article {3345, title = {Snail maintains the stem/progenitor state of skin epithelial cells and carcinomas through the autocrine effect of matricellular protein Mindin.}, journal = {Cell Rep}, volume = {40}, year = {2022}, month = {2022 09 20}, pages = {111390}, abstract = {

Preservation of a small population of cancer stem cells (CSCs) within a heterogeneous carcinoma serves as a paradigm to understand how select cells in a tissue maintain their undifferentiated status. In both embryogenesis and cancer, Snail has been correlated with stemness, but the molecular underpinning of this phenomenon remains largely ill-defined. In models of cutaneous squamous cell carcinoma (cSCC), we discovered a non-epithelial-mesenchymal transition function for the transcription factor Snail in maintaining the stemness of epidermal keratinocytes. Snail-expressing cells secrete the matricellular protein Mindin, which functions in an autocrine fashion to activate a Src-STAT3 pathway to reinforce their stem/progenitor phenotype. This pathway is activated by the engagement of Mindin with the leukocyte-specific integrin, CD11b (ITGAM), which is also unexpectedly expressed by epidermal keratinocytes. Interestingly, disruption of this signaling module in human cSCC attenuates tumorigenesis, suggesting that targeting Mindin would be a promising therapeutic approach to hinder cancer recurrence.

}, keywords = {Carcinoma, Squamous Cell, Cell Line, Tumor, Epithelial Cells, Extracellular Matrix Proteins, Humans, Integrins, Neoplasm Proteins, Neoplasm Recurrence, Local, Neoplastic Stem Cells, Skin Neoplasms, Snail Family Transcription Factors}, issn = {2211-1247}, doi = {10.1016/j.celrep.2022.111390}, author = {Badarinath, Krithika and Dam, Binita and Kataria, Sunny and Zirmire, Ravindra K and Dey, Rakesh and Kansagara, Gaurav and Ajnabi, Johan and Hegde, Akshay and Singh, Randhir and Masudi, Tafheem and Sambath, Janani and Sachithanandan, Sasikala P and Kumar, Prashant and Gulyani, Akash and He, You-Wen and Krishna, Sudhir and Jamora, Colin} } @article {2362, title = {Astrocytic reactivity triggered by defective autophagy and metabolic failure causes neurotoxicity in frontotemporal dementia type 3.}, journal = {Stem Cell Reports}, volume = {16}, year = {2021}, month = {2021 Nov 09}, pages = {2736-2751}, abstract = {

Frontotemporal dementia type 3 (FTD3), caused by a point mutation in the charged multivesicular body protein 2B (CHMP2B), affects mitochondrial ultrastructure and the endolysosomal pathway in neurons. To dissect the astrocyte-specific impact of mutant CHMP2B expression, we generated astrocytes from human induced pluripotent stem cells (hiPSCs) and confirmed our findings in CHMP2B mutant mice. Our data provide mechanistic insights into how defective autophagy causes perturbed mitochondrial dynamics with impaired glycolysis, increased reactive oxygen species, and elongated mitochondrial morphology, indicating increased mitochondrial fusion in FTD3 astrocytes. This shift in astrocyte homeostasis triggers a reactive astrocyte phenotype and increased release of toxic cytokines, which accumulate in nuclear factor kappa b (NF-κB) pathway activation with increased production of CHF, LCN2, and C3 causing neurodegeneration.

}, issn = {2213-6711}, doi = {10.1016/j.stemcr.2021.09.013}, author = {Chandrasekaran, Abinaya and Dittlau, Katarina Stoklund and Corsi, Giulia I and Haukedal, Henriette and Doncheva, Nadezhda T and Ramakrishna, Sarayu and Ambardar, Sheetal and Salcedo, Claudia and Schmidt, Sissel I and Zhang, Yu and Cirera, Susanna and Pihl, Maria and Schmid, Benjamin and Nielsen, Troels Tolstrup and Nielsen, J{\o}rgen E and Kolko, Miriam and Kobol{\'a}k, Julianna and Dinny{\'e}s, Andr{\'a}s and Hyttel, Poul and Palakodeti, Dasaradhi and Gorodkin, Jan and Muddashetty, Ravi S and Meyer, Morten and Aldana, Blanca I and Freude, Kristine K} } @article {2267, title = {Histological and Immunohistochemical Examination of Stem Cell Proliferation and Reepithelialization in the Wounded Skin.}, journal = {Bio Protoc}, volume = {11}, year = {2021}, month = {2021 Jan 20}, pages = {e3894}, abstract = {

The skin is the largest organ that protects our body from the external environment and it is constantly exposed to pathogenic insults and injury. Repair of damage to this organ is carried out by a complex process involving three overlapping phases of inflammation, proliferation and remodeling. Histological analysis of wounded skin is a convenient approach to examine broad alterations in tissue architecture and investigate cells in their indigenous microenvironment. In this article we present a protocol for immunohistochemical examination of wounded skin to study mechanisms involved in regulating stem cell activity, which is a vital component in the repair of the damaged tissue. Performing such histological analysis enables the understanding of the spatial relationship between cells that interact in the specialized wound microenvironment. The analytical tools described herein permit the quantitative measurement of the regenerative ability of stem cells adjacent to the wound and the extent of re-epithelialization during wound closure. These protocols can be adapted to investigate numerous cellular processes and cell types within the wounded skin.

}, issn = {2331-8325}, doi = {10.21769/BioProtoc.3894}, author = {Gund, Rupali and Zirmire, Ravindra and J, Haarshaadri and Kansagara, Gaurav and Jamora, Colin} } @article {2325, title = {Isolation and Quantification of Mouse γδT-cells and .}, journal = {Bio Protoc}, volume = {11}, year = {2021}, month = {2021 Sep 05}, pages = {e4148}, abstract = {

The skin plays an important role in protecting the body from pathogens and chemicals in the external environment. Upon injury, a healing program is rapidly initiated and involves extensive intercellular communication to restore tissue homeostasis. The deregulation of this crosstalk can lead to abnormal healing processes and is the foundation of many skin diseases. A relatively overlooked cell type that nevertheless plays critical roles in skin homeostasis, wound repair, and disease is the dendritic epidermal T cells (DETCs), which are also called γδT-cells. Given their varied roles in both physiological and pathological scenarios, interest in the regulation and function of DETCs has substantially increased. Moreover, their ability to regulate other immune cells has garnered substantial attention for their potential role as immunomodulators and in immunotherapies. In this article, we describe a protocol to isolate and culture DETCs and analyse them within the skin. These approaches will facilitate the investigation of their crosstalk with other cutaneous cells and the mechanisms by which they influence the status of the skin. Graphic abstract: Overall workflow to analyse DETCs and .

}, issn = {2331-8325}, doi = {10.21769/BioProtoc.4148}, author = {Rana, Isha and Badarinath, Krithika and Zirmire, Ravindra K and Jamora, Colin} } @article {2242, title = {Mechanical instability of adherens junctions overrides intrinsic quiescence of hair follicle stem cells.}, journal = {Dev Cell}, volume = {56}, year = {2021}, month = {2021 Mar 22}, pages = {761-780.e7}, abstract = {

Vinculin, a mechanotransducer associated with both adherens junctions (AJs) and focal adhesions (FAs), plays a central role in force transmission through cell-cell and cell-substratum contacts. We generated the conditional knockout (cKO) of vinculin in murine skin that results in the loss of bulge stem cell (BuSC) quiescence and promotes continual cycling of the hair follicles. Surprisingly, we find that the AJs in vinculin cKO cells are mechanically weak and impaired in force generation despite increased junctional expression of E-cadherin and α-catenin. Mechanistically, we demonstrate that vinculin functions by keeping α-catenin in a stretched/open conformation, which in turn regulates the retention of YAP1, another potent mechanotransducer and regulator of cell proliferation, at the AJs. Altogether, our data provide mechanistic insights into the hitherto-unexplored regulatory link between the mechanical stability of cell junctions and contact-inhibition-mediated maintenance of BuSC quiescence.

}, issn = {1878-1551}, doi = {10.1016/j.devcel.2021.02.020}, author = {Biswas, Ritusree and Banerjee, Avinanda and Lembo, Sergio and Zhao, Zhihai and Lakshmanan, Vairavan and Lim, Ryan and Le, Shimin and Nakasaki, Manando and Kutyavin, Vassily and Wright, Graham and Palakodeti, Dasaradhi and Ross, Robert S and Jamora, Colin and Vasioukhin, Valeri and Jie, Yan and Raghavan, Srikala} } @article {2376, title = {Proteome plasticity in response to persistent environmental change.}, journal = {Mol Cell}, volume = {81}, year = {2021}, month = {2021 08 19}, pages = {3294-3309.e12}, abstract = {

Temperature is a variable component of the environment, and all organisms must deal with or adapt to temperature change. Acute temperature change activates cellular stress responses, resulting in refolding or removal of damaged proteins. However, how organisms adapt to long-term temperature change remains largely unexplored. Here we report that budding yeast responds to long-term high temperature challenge by switching from chaperone induction to reduction of temperature-sensitive proteins and re-localizing a portion of its proteome. Surprisingly, we also find that many proteins adopt an alternative conformation. Using Fet3p as an example, we find that the temperature-dependent conformational difference is accompanied by distinct thermostability, subcellular localization, and, importantly, cellular functions. We postulate that, in addition to the known mechanisms of adaptation, conformational plasticity allows some polypeptides to acquire new biophysical properties and functions when environmental change endures.

}, keywords = {Acclimatization, Adaptation, Physiological, Animals, Environmental Exposure, Gene Expression Regulation, Fungal, Hot Temperature, Proteome, Saccharomycetales, Stress, Physiological, Transcriptome}, issn = {1097-4164}, doi = {10.1016/j.molcel.2021.06.028}, author = {Domnauer, Matthew and Zheng, Fan and Li, Liying and Zhang, Yanxiao and Chang, Catherine E and Unruh, Jay R and Conkright-Fincham, Juliana and McCroskey, Scott and Florens, Laurence and Zhang, Ying and Seidel, Christopher and Fong, Benjamin and Schilling, Birgit and Sharma, Rishi and Ramanathan, Arvind and Si, Kausik and Zhou, Chuankai} } @article {2206, title = {Role of Hypoxia-Mediated Autophagy in Tumor Cell Death and Survival.}, journal = {Cancers (Basel)}, volume = {13}, year = {2021}, month = {2021 Jan 30}, abstract = {

Programmed cell death or type I apoptosis has been extensively studied and its contribution to the pathogenesis of disease is well established. However, autophagy functions together with apoptosis to determine the overall fate of the cell. The cross talk between this active self-destruction process and apoptosis is quite complex and contradictory as well, but it is unquestionably decisive for cell survival or cell death. Autophagy can promote tumor suppression but also tumor growth by inducing cancer-cell development and proliferation. In this review, we will discuss how autophagy reprograms tumor cells in the context of tumor hypoxic stress. We will illustrate how autophagy acts as both a suppressor and a driver of tumorigenesis through tuning survival in a context dependent manner. We also shed light on the relationship between autophagy and immune response in this complex regulation. A better understanding of the autophagy mechanisms and pathways will undoubtedly ameliorate the design of therapeutics aimed at targeting autophagy for future cancer immunotherapies.

}, issn = {2072-6694}, doi = {10.3390/cancers13030533}, author = {Zaarour, Rania F and Azakir, Bilal and Hajam, Edries Y and Nawafleh, Husam and Zeinelabdin, Nagwa A and Engelsen, Agnete S T and Thiery, J{\'e}rome and Jamora, Colin and Chouaib, Salem} } @article {2363, title = {SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion.}, journal = {Nature}, volume = {599}, year = {2021}, month = {2021 11}, pages = {114-119}, abstract = {

The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha). In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era.

}, keywords = {Antibodies, Neutralizing, Cell Fusion, Cell Line, COVID-19 Vaccines, Female, Health Personnel, Humans, Immune Evasion, India, Kinetics, Male, SARS-CoV-2, Spike Glycoprotein, Coronavirus, Vaccination, Virus Replication}, issn = {1476-4687}, doi = {10.1038/s41586-021-03944-y}, author = {Mlcochova, Petra and Kemp, Steven A and Dhar, Mahesh Shanker and Papa, Guido and Meng, Bo and Ferreira, Isabella A T M and Datir, Rawlings and Collier, Dami A and Albecka, Anna and Singh, Sujeet and Pandey, Rajesh and Brown, Jonathan and Zhou, Jie and Goonawardane, Niluka and Mishra, Swapnil and Whittaker, Charles and Mellan, Thomas and Marwal, Robin and Datta, Meena and Sengupta, Shantanu and Ponnusamy, Kalaiarasan and Radhakrishnan, Venkatraman Srinivasan and Abdullahi, Adam and Charles, Oscar and Chattopadhyay, Partha and Devi, Priti and Caputo, Daniela and Peacock, Tom and Wattal, Chand and Goel, Neeraj and Satwik, Ambrish and Vaishya, Raju and Agarwal, Meenakshi and Mavousian, Antranik and Lee, Joo Hyeon and Bassi, Jessica and Silacci-Fegni, Chiara and Saliba, Christian and Pinto, Dora and Irie, Takashi and Yoshida, Isao and Hamilton, William L and Sato, Kei and Bhatt, Samir and Flaxman, Seth and James, Leo C and Corti, Davide and Piccoli, Luca and Barclay, Wendy S and Rakshit, Partha and Agrawal, Anurag and Gupta, Ravindra K} } @article {1645, title = {Altered steady state and activity-dependent de novo protein expression in fragile X syndrome.}, journal = {Nat Commun}, volume = {10}, year = {2019}, month = {2019 Apr 12}, pages = {1710}, abstract = {

Whether fragile X mental retardation protein (FMRP) target mRNAs and neuronal activity contributing to elevated basal neuronal protein synthesis in fragile X syndrome (FXS) is unclear. Our proteomic experiments reveal that the de novo translational profile in FXS model mice is altered at steady state and in response to metabotropic glutamate receptor (mGluR) stimulation, but the proteins expressed differ under these conditions. Several altered proteins, including Hexokinase\ 1 and Ras, also are expressed in the blood of\ FXS model mice and pharmacological treatments previously reported to ameliorate phenotypes modify their abundance in blood. In addition, plasma levels of Hexokinase\ 1 and Ras differ between FXS patients and healthy volunteers. Our data suggest that brain-based de novo proteomics in FXS model mice can be used to find altered expression of proteins in blood that could serve as disease-state biomarkers in individuals with FXS.

}, issn = {2041-1723}, doi = {10.1038/s41467-019-09553-8}, author = {Bowling, Heather and Bhattacharya, Aditi and Zhang, Guoan and Alam, Danyal and Lebowitz, Joseph Z and Bohm-Levine, Nathaniel and Lin, Derek and Singha, Priyangvada and Mamcarz, Maggie and Puckett, Rosemary and Zhou, Lili and Aryal, Sameer and Sharp, Kevin and Kirshenbaum, Kent and Berry-Kravis, Elizabeth and Neubert, Thomas A and Klann, Eric} } @article {1603, title = {Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway.}, journal = {Nat Commun}, volume = {10}, year = {2019}, month = {2019 01 09}, pages = {89}, abstract = {

The importance of gut microbiota in human health and pathophysiology is undisputable. Despite the abundance of metagenomics data, the functional dynamics of gut microbiota in human health and disease remain elusive. Urolithin A (UroA), a major microbial metabolite derived from polyphenolics of berries and pomegranate fruits displays anti-inflammatory, anti-oxidative, and anti-ageing activities. Here, we show that UroA and its potent synthetic analogue (UAS03) significantly enhance gut barrier function and inhibit unwarranted inflammation. We demonstrate that UroA and UAS03 exert their barrier functions through activation of aryl hydrocarbon receptor (AhR)- nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent pathways to upregulate epithelial tight junction proteins. Importantly, treatment with these compounds attenuated colitis in pre-clinical models by remedying barrier dysfunction in addition to anti-inflammatory activities. Cumulatively, the results highlight how microbial metabolites provide two-pronged beneficial activities at gut epithelium by enhancing barrier functions and reducing inflammation to protect from colonic diseases.

}, keywords = {Animals, Basic Helix-Loop-Helix Transcription Factors, Caco-2 Cells, Coumarins, Epithelial Cells, Gene Expression Regulation, HT29 Cells, Humans, Intestinal Mucosa, Macrophages, Mice, Mice, Inbred C57BL, Mice, Knockout, NF-E2-Related Factor 2, Receptors, Aryl Hydrocarbon, Specific Pathogen-Free Organisms, Tight Junction Proteins}, issn = {2041-1723}, doi = {10.1038/s41467-018-07859-7}, author = {Singh, Rajbir and Chandrashekharappa, Sandeep and Bodduluri, Sobha R and Baby, Becca V and Hegde, Bindu and Kotla, Niranjan G and Hiwale, Ankita A and Saiyed, Taslimarif and Patel, Paresh and Vijay-Kumar, Matam and Langille, Morgan G I and Douglas, Gavin M and Cheng, Xi and Rouchka, Eric C and Waigel, Sabine J and Dryden, Gerald W and Alatassi, Houda and Zhang, Huang-Ge and Haribabu, Bodduluri and Vemula, Praveen K and Jala, Venkatakrishna R} } @article {1207, title = {Cycling to Meet Fate: Connecting Pluripotency to the Cell Cycle}, journal = {Frontiers in Cell and Developmental Biology}, volume = {6}, year = {2018}, pages = {57}, abstract = {

Pluripotent stem cells are characterised by their high proliferative rates, their ability to self-renew and their potential to differentiate to all the three germ layers. This rapid proliferation is brought about by a highly modified cell cycle that allows the cells to quickly shuttle from DNA synthesis to cell division, by reducing the time spent in the intervening gap phases. Many key regulators that define the somatic cell cycle are either absent or exhibit altered behaviour, allowing the pluripotent cell to bypass cell cycle checkpoints typical of somatic cells. Experimental analysis of this modified stem cell cycle has been challenging due to the strong link between rapid proliferation and pluripotency, since perturbations to the cell cycle or pluripotency factors result in differentiation. Despite these hurdles, our understanding of this unique cell cycle has greatly improved over the past decade, in part because of the availability of new technologies that permit the analysis of single cells in heterogeneous populations. This review aims to highlight some of the recent discoveries in this area with a special emphasis on different states of pluripotency. We also discuss the highly interlinked network that connects pluripotency factors and key cell cycle genes and review evidence for how this interdependency may promote the rapid cell cycle. This issue gains translational importance since disruptions in stem cell proliferation and differentiation can impact disorders at opposite ends of a spectrum, from cancer to degenerative disease.

}, issn = {2296-634X}, doi = {10.3389/fcell.2018.00057}, url = {https://www.frontiersin.org/article/10.3389/fcell.2018.00057}, author = {Zaveri, Lamuk and Dhawan, Jyotsna} }