@article {1147, title = {Substrate-bound outward-open structure of a Na-coupled sialic acid symporter reveals a new Na site.}, journal = {Nat Commun}, volume = {9}, year = {2018}, month = {2018 May 01}, pages = {1753}, abstract = {

Many pathogenic bacteria utilise sialic acids as an energy source or use them as an external coating to evade immune detection. As such, bacteria that colonise sialylated environments deploy specific transporters to mediate import of scavenged sialic acids. Here, we report a substrate-bound 1.95 {\r A} resolution structure and subsequent characterisation of SiaT, a sialic acid transporter from Proteus mirabilis. SiaT is a secondary active transporter of the sodium solute symporter (SSS) family, which use Na gradients to drive the uptake of extracellular substrates. SiaT adopts the LeuT-fold and is in an outward-open conformation in complex with the sialic acid N-acetylneuraminic acid and two Na ions. One Na binds to the conserved Na2 site, while the second Na binds to a new position, termed Na3, which is conserved in many SSS family members. Functional and molecular dynamics studies validate the substrate-binding site and demonstrate that both Na sites regulate N-acetylneuraminic acid transport.

}, issn = {2041-1723}, doi = {10.1038/s41467-018-04045-7}, author = {Wahlgren, Weixiao Y and Dunevall, Elin and North, Rachel A and Paz, Aviv and Scalise, Mariafrancesca and Bisignano, Paola and Bengtsson-Palme, Johan and Goyal, Parveen and Claesson, Elin and Caing-Carlsson, Rhawnie and Andersson, Rebecka and Beis, Konstantinos and Nilsson, Ulf J and Farewell, Anne and Pochini, Lorena and Indiveri, Cesare and Grabe, Michael and Dobson, Renwick C J and Abramson, Jeff and Ramaswamy, S and Friemann, Rosmarie} } @article {1173, title = {Stochastic steps in secondary active sugar transport.}, journal = {Proc Natl Acad Sci U S A}, volume = {113}, year = {2016}, month = {2016 07 05}, pages = {E3960-6}, abstract = {

Secondary active transporters, such as those that adopt the leucine-transporter fold, are found in all domains of life, and they have the unique capability of harnessing the energy stored in ion gradients to accumulate small molecules essential for life as well as expel toxic and harmful compounds. How these proteins couple ion binding and transport to the concomitant flow of substrates is a fundamental structural and biophysical question that is beginning to be answered at the atomistic level with the advent of high-resolution structures of transporters in different structural states. Nonetheless, the dynamic character of the transporters, such as ion/substrate binding order and how binding triggers conformational change, is not revealed from static structures, yet it is critical to understanding their function. Here, we report a series of molecular simulations carried out on the sugar transporter vSGLT that lend insight into how substrate and ions are released from the inward-facing state of the transporter. Our simulations reveal that the order of release is stochastic. Functional experiments were designed to test this prediction on the human homolog, hSGLT1, and we also found that cytoplasmic release is not ordered, but we confirmed that substrate and ion binding from the extracellular space is ordered. Our findings unify conflicting published results concerning cytoplasmic release of ions and substrate and hint at the possibility that other transporters in the superfamily may lack coordination between ions and substrate in the inward-facing state.

}, keywords = {Glucose, HEK293 Cells, Humans, Markov Chains, Molecular Dynamics Simulation, Monte Carlo Method, Patch-Clamp Techniques, Sodium, Sodium-Glucose Transporter 1}, issn = {1091-6490}, doi = {10.1073/pnas.1525378113}, author = {Adelman, Joshua L and Ghezzi, Chiara and Bisignano, Paola and Loo, Donald D F and Choe, Seungho and Abramson, Jeff and Rosenberg, John M and Wright, Ernest M and Grabe, Michael} }