TY - JOUR T1 - Distinct regulation of bioenergetics and translation by group I mGluR and NMDAR. JF - EMBO Rep Y1 - 2020 A1 - Ghosh Dastidar, Sudhriti A1 - Das Sharma, Shreya A1 - Chakraborty, Sumita A1 - Chattarji, Sumantra A1 - Bhattacharya, Aditi A1 - Muddashetty, Ravi S AB -

Neuronal activity is responsible for the high energy consumption in the brain. However, the cellular mechanisms draining ATP upon the arrival of a stimulus are yet to be explored systematically at the post-synapse. Here, we provide evidence that a significant fraction of ATP is consumed upon glutamate stimulation to energize mGluR-induced protein synthesis. We find that both mGluR and NMDAR alter protein synthesis and ATP consumption with distinct kinetics at the synaptic-dendritic compartments. While mGluR activation leads to a rapid and sustained reduction in neuronal ATP levels, NMDAR activation has no immediate impact on the same. ATP consumption correlates inversely with the kinetics of protein synthesis for both receptors. We observe a persistent elevation in protein synthesis within 5 minutes of mGluR activation and a robust inhibition of the same within 2 minutes of NMDAR activation, assessed by the phosphorylation status of eEF2 and metabolic labeling. However, a delayed protein synthesis-dependent ATP expenditure ensues after 15 minutes of NMDAR stimulation. We identify a central role for AMPK in the correlation between protein synthesis and ATP consumption. AMPK is dephosphorylated and inhibited upon mGluR activation, while it is phosphorylated upon NMDAR activation. Perturbing AMPK activity disrupts receptor-specific modulations of eEF2 phosphorylation and protein synthesis. Our observations, therefore, demonstrate that the regulation of the AMPK-eEF2 signaling axis by glutamate receptors alters neuronal protein synthesis and bioenergetics.

ER - TY - JOUR T1 - Dopamine requires unique residues to signal via the serotonin 2A receptor. JF - Neuroscience Y1 - 2020 A1 - Soman, Shuchita A1 - Bhattacharya, Aditi A1 - Panicker, Mitradas M AB -

Serotonin is an important neurotransmitter and neuromodulator. Disruption of the serotonergic system has been implicated in various psychiatric disorders such as schizophrenia and bipolar disorder. Most of the drugs targeting these neurotransmitter systems are classified primarily as agonists or inverse agonists/antagonists, with their described function being limited to activating the canonical signaling pathway(s), or inhibiting the pathway(s) respectively. Previous work with the human 5-HT has shown the receptor to be activated by dopamine, also an endogenous ligand. Dopamine is the cognate ligand of the dopaminergic system, which significantly overlaps with the serotonergic system in the brain. The two systems innervate many of the same brain areas, and the central serotonergic systems also regulate dopamine functions. Our aim was to investigate the downstream signaling set up by the receptor on being activated by dopamine. We show that dopamine is a functionally selective ligand at 5-HT and have examined dopamine as a ligand with respect to some receptor-dependent phenotypes. Our results show that dopamine acts as an agonist at the human serotonin 2A receptor and brings about its activation and internalization. Using in vitro assays, we have established differences in the signaling pathways set up by dopamine as compared to serotonin. Using site-specific mutagenesis we have identified residues important for this functional selectivity, shown by dopamine at this receptor. Our identification of specific residues important in the functional selectivity of dopamine at 5-HT could have far reaching implications for the field of GPCR signaling and drug-design. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.

VL - 439 ER -