%0 Journal Article %J BMC Mol Cell Biol %D 2020 %T The primary cilium dampens proliferative signaling and represses a G2/M transcriptional network in quiescent myoblasts. %A Venugopal, Nisha %A Ghosh, Ananga %A Gala, Hardik %A Aloysius, Ajoy %A Vyas, Neha %A Dhawan, Jyotsna %X

BACKGROUND: Reversible cell cycle arrest (quiescence/G0) is characteristic of adult stem cells and is actively controlled at multiple levels. Quiescent cells also extend a primary cilium, which functions as a signaling hub. Primary cilia have been shown to be important in multiple developmental processes, and are implicated in numerous developmental disorders. Although the association of the cilium with G0 is established, the role of the cilium in the control of the quiescence program is still poorly understood.

RESULTS: Primary cilia are dynamically regulated across different states of cell cycle exit in skeletal muscle myoblasts: quiescent myoblasts elaborate a primary cilium in vivo and in vitro, but terminally differentiated myofibers do not. Myoblasts where ciliogenesis is ablated using RNAi against a key ciliary assembly protein (IFT88) can exit the cell cycle but display an altered quiescence program and impaired self-renewal. Specifically, the G0 transcriptome in IFT88 knockdown cells is aberrantly enriched for G2/M regulators, suggesting a focused repression of this network by the cilium. Cilium-ablated cells also exhibit features of activation including enhanced activity of Wnt and mitogen signaling and elevated protein synthesis via inactivation of the translational repressor 4E-BP1.

CONCLUSIONS: Taken together, our results show that the primary cilium integrates and dampens proliferative signaling, represses translation and G2/M genes, and is integral to the establishment of the quiescence program.

%B BMC Mol Cell Biol %V 21 %P 25 %8 2020 Apr 15 %G eng %N 1 %R 10.1186/s12860-020-00266-1 %0 Journal Article %J Sci Signal %D 2018 %T The transcription factor Lef1 switches partners from β-catenin to Smad3 during muscle stem cell quiescence. %A Aloysius, Ajoy %A DasGupta, Ramanuj %A Dhawan, Jyotsna %X

Skeletal muscle stem cells (MuSCs), also known as satellite cells, persist in adult mammals by entering a state of quiescence (G) during the early postnatal period. Quiescence is reversed during damage-induced regeneration and re-established after regeneration. Entry of cultured myoblasts into G is associated with a specific, reversible induction of Wnt target genes, thus implicating members of the Tcf and Lef1 (Tcf/Lef) transcription factor family, which mediate transcriptional responses to Wnt signaling, in the initiation of quiescence. We found that the canonical Wnt effector β-catenin, which cooperates with Tcf/Lef, was dispensable for myoblasts to enter quiescence. Using pharmacological and genetic approaches in cultured C2C12 myoblasts and in MuSCs, we demonstrated that Tcf/Lef activity during quiescence depended not on β-catenin but on the transforming growth factor-β (TGF-β) effector and transcriptional coactivator Smad3, which colocalized with Lef1 at canonical Wnt-responsive elements and directly interacted with Lef1 specifically in G Depletion of Smad3, but not β-catenin, reduced Lef1 occupancy at target promoters, Tcf/Lef target gene expression, and self-renewal of myoblasts. In vivo, MuSCs underwent a switch from β-catenin-Lef1 to Smad3-Lef1 interactions during the postnatal switch from proliferation to quiescence, with β-catenin-Lef1 interactions recurring during damage-induced reactivation. Our findings suggest that the interplay of Wnt-Tcf/Lef and TGF-β-Smad3 signaling activates canonical Wnt target promoters in a manner that depends on β-catenin during myoblast proliferation but is independent of β-catenin during MuSC quiescence.

%B Sci Signal %V 11 %8 2018 Jul 24 %G eng %N 540 %R 10.1126/scisignal.aan3000